The local structure of trans-Sasakian manifolds. (English) Zbl 0772.53036

A trans-Sasakian structure is, in some sense, an analogue of a locally conformal Kähler structure on an almost Hermitian manifold. Two remarkable subclasses of trans-Sasakian structures are those called \({\mathcal C}_ 5\)- and \({\mathcal C}_ 6\)-structures, which contain the Kenmotsu and Sasakian structures respectively. In this paper the author has completely characterized the local nature of trans-Sasakian structures on differentiable manifolds of dimension \(\geq 5\). This has been done through two stages: 1) characterizing the local nature of \({\mathcal C}_ 5\)- and \({\mathcal C}_ 6\)-structures; 2) showing that a trans- Sasakian structure is either of class \({\mathcal C}_ 5\) or of class \({\mathcal C}_ 6\). The author has finally obtained some examples of 3-dimensional trans-Sasakian manifolds which are neither of class \({\mathcal C}_ 5\) nor of class \({\mathcal C}_ 6\).
Reviewer: N.L.Youssef (Giza)


53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
Full Text: DOI


[1] Blair, D. E., The theory of quasi-Sasakian structures, J. Diff. Geom., 1, 331-345 (1967) · Zbl 0163.43903
[2] D. E.Blair,Contact manifolds in Riemannian geometry, Lecture Notes in Math,509, Springer (1976). · Zbl 0319.53026
[3] Cordero, L. A.; Fernandez, M.; De Leon, M., Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures, Atti. Sem. Mat. Fis. Univ. Modena, 34, 43-54 (198586) · Zbl 0616.53032
[4] Chinea, D.; Gonzalez, C., A classification of almost contact metric manifolds, Ann. Mat. Pura Appl., (IV), 156, 15-36 (1990) · Zbl 0711.53028
[5] Fujimoto, A.; Muto, H., On cosymplectic manifolds, Tensor, 28, 43-52 (1974) · Zbl 0286.53031
[6] Gray, A.; Hervella, L. M., The sixteen-classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., (IV), 123, 35-58 (1980) · Zbl 0444.53032
[7] Haraguchi, Y., Sur une généralisation des structures de contact, Thèse (1981), Mulhouse: Univ. du Haute Alsace, Mulhouse
[8] Janssens, D.; Vanhecke, L., Almost contact structures and curvature tensor, Kodai Math. J., 4, 1-27 (1981) · Zbl 0472.53043
[9] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, 93-103 (1972) · Zbl 0245.53040
[10] Libermann, P., Sur les structures presque complexes et autres structures infinitesimales regulieres, Bull. Soc. Mat. France, 83, 195-224 (1955) · Zbl 0064.41702
[11] Oubina, J., New classes of almost contact metric structures, Publicationes Mathematicae, 32, 187-193 (1985) · Zbl 0611.53032
[12] Olszak, Z., Normal almost contact metric manifolds of dimension three, Ann. Polon. Math., 47, no. 1, 41-50 (1986) · Zbl 0605.53018
[13] Sasaki, S.; Hatakeyama, Y., On differentiable manifolds with certain structures which are closely related to almost contact structure — II, Tôhoku Math. J., 13, 281-294 (1961) · Zbl 0112.14002
[14] Sasaki, S.; Hatakeyama, Y., On differentiable manifolds with contact metric structures, J. Math. Soc. Japan, 14, 249-271 (1962) · Zbl 0109.40504
[15] Vaisman, I., On locally conformal almost Kähler manifolds, Israel J. Math., 24, 338-351 (1976) · Zbl 0335.53055
[16] Vaisman, I., Locally conformai Kähler manifolds with parallel Lee form, Rend. Mat. Roma, 12, 263-284 (1979) · Zbl 0447.53032
[17] Vaisman, I., Generalized Hopf manifolds, Geometriae Dedicata, 13, 231-255 (1982) · Zbl 0506.53032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.