Controller design for plants with structured uncertainty. (English) Zbl 0772.93028

Summary: This paper addresses the problem of designing feedback controllers to achieve good performance in the presence of structures plant uncertainty and bounded but unknown disturbances. A general formulation for the performance robustness problem is presented and exact computable conditions are furnished. These conditions are then utilized for synthesizing robust controllers which involves solving \(\ell_ 1\) optimization problems. These solutions are computed using the duality theory of Lagrange multipliers. Approximations and computational issues are discussed.


93B51 Design techniques (robust design, computer-aided design, etc.)
93B05 Controllability
93B50 Synthesis problems


Full Text: DOI


[1] Bamieh, B. A.; Dahleh, M., On robust stability with structured time-invariant perturbations, Syst. Contr. Lett. (1993), (Submitted.) · Zbl 0785.93071
[2] Bamieh, B. A.; Dahleh, M. A.; Pearson, J. B., Minimization of the \(L^∞\)-induced norm for sampled-data systems, IEEE Trans. Aut. Control (1992), (To appear.)
[3] Boyd, S. P.; Barratt, C. H., (Linear Controller Design: Limits of Performance (1991), Prentice Hall: Prentice Hall Englewood Cliffs, NJ) · Zbl 0748.93003
[4] Boyd, S. P.; Doyle, J. C., Comparison of peak and RMS gains for discrete-time systems, Syst. Contr. Lett., 9, 1-6 (1987) · Zbl 0644.93050
[5] Dahleh, M. A., BIBO stability robustness for coprime factor perturbations, IEEE Trans. Aut. Control, 37, 352-355 (1992)
[6] Dahleh, M.; Dahleh, M. A., Optimal rejection of persistent and bounded disturbances: continuity properties and adaptation, IEEE Trans. Aut. Control, 35, 687-696 (1990) · Zbl 0800.93655
[7] Dahleh, M. A.; Pearson, J. B., \(ℓ^1\) optimal feedback controllers for MIMO discrete-time systems, IEEE Trans. Aut. Control, 32, 314-322 (1987) · Zbl 0622.93041
[8] Dahleh, M. A.; Pearson, J. B., Optimal rejection of persistent disturbances, robust stability and mixed sensitivity minimization, IEEE Trans. Aut. Control, 33, 722-731 (1988) · Zbl 0657.93019
[9] Dahleh, M. A.; Pearson, J. B., Minimization of a regulated response to a fixed input, IEEE Trans. Aut. Control, 33, 924-930 (1988) · Zbl 0675.93005
[10] Dahleh, M. A.; Ohta, Y., A necessary and sufficient condition for robust BIBO stability, Syst. Contr. Lett., 11, 271-275 (1988) · Zbl 0654.93057
[11] Dahleh, M. A.; Richards, D., Application of modern control theory on a model of the X-29 aircraft, (report No. LIDS-P-1932 (1989), LIDS, MIT)
[12] Dahleh, M. A.; Voulgaris, P.; Valavani, L., Optimal and robust controllers for periodic and multi-rate systems, IEEE Trans. Aut. Control, 37, 90-99 (1992) · Zbl 0747.93028
[13] Dahleh, M. A.; Elia, N.; Diaz-Bobillo, I., Controller design via linear programming (1993), (In preparation.)
[14] Deodhare, G.; Vidyasagar, M., Some results on \(ℓ_1\)-optimality of feedback control systems: the SISO discrete-time case, IEEE Trans. Aut. Control, 35, 1082-1085 (1990) · Zbl 0724.93038
[15] Desoer, C. A.; Vidyasagar, M., (Feedback Systems: Input-Output Properties (1975), Academic: Academic NY) · Zbl 0327.93009
[16] Doyle, J. C., Analysis of feedback systems with structured uncertainty, (IEE Proceedings, 129 (1982)), 242-250
[17] Doyle, J. C.; Stein, G., Multivariable feedback design: concepts for a classical/modern synthesis, IEEE-Trans. A-C, 26, 4-16 (1981) · Zbl 0462.93027
[18] Doyle, J. C.; Glover, K.; Khargonekar, P. P.; Francis, B. A., State space solutions to standard \(H_2\) and \(H_∞\) control problems, IEEE Trans. Aut. Control, 34, 831-847 (1989) · Zbl 0698.93031
[19] Diaz-Bobillo, I.; Dahleh, M. A., State feedback \(ℓ_1\) optimal controllers can be dynamic, (Systems and Control Letters (1993), LIDS, MIT), Report No. LIDS-P-2051. (To appear.) · Zbl 0767.93030
[20] Diaz-Bobillo, I.; Dahleh, M. A., Minimization of the maximum peak-to-peak gain: the general multiblock problem, IEEE Trans. Aut. Control (1992), (To appear) · Zbl 0810.49035
[21] Dullerud, G.; Francis, B. A., \(L^1\) analysis and design of sampled-data systems, IEEE Trans. Aut. Control, 37, 436-446 (1992) · Zbl 0756.93053
[22] Francis, B. A., (A Course in \(H_∞\) Control Theory (1987), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0624.93003
[23] Glover, K.; McFarlane, D., Robust stabilization of normalized coprime factor plant description with \(H_∞\) bounded uncertainty, IEEE Trans. Aut. Control, 34, 830-831 (1989) · Zbl 0698.93063
[24] Horn, R.; Johnson, C., (Matrix Analysis (1985), Cambridge University Press) · Zbl 0576.15001
[25] Khammash, M., Necessary and sufficient conditions for the robustness of time-varying systems with applications to sampled-data systems, IEEE Trans. Aut. Control (1992), (To appear.)
[26] Khammash, M.; Pearson, J. B., Robust disturbance rejection in \(ℓ^1\)-optimal control systems, Syst. Contr. Lett., 14, 93-101 (1990) · Zbl 0692.93029
[27] Khammash, M.; Dahleh, M., Time-varying control and the robust performance of systems with structured norm-bounded uncertainty, Automatica (1993), (To appear.)
[28] Khammash, M.; Pearson, J. B., Performance robustness of discrete-time systems with structured uncertainty, IEEE Trans. Aut. Control, 36, 398-412 (1991) · Zbl 0754.93063
[29] Khammash, M.; Pearson, J. B., Robustness synthesis for discrete-time systems with structured uncertainty, (Proc. of 1991 ACC (1991)), 2720-2724
[30] Khammash, M.; Pearson, J. B., Analysis and design of robust performance with structured uncertainty, Syst. Contr. Lett. (1992), (To appear.) · Zbl 0768.93065
[31] Luenberger, D. G., (Optimization by Vector Space Methods (1969), John Wiley: John Wiley NY) · Zbl 0176.12701
[32] McDonald, J. S.; Pearson, J. B., \(ℓ_1\)-optimal control of multivariable systems with output norm constraints, Automatica, 27, 317-329 (1991) · Zbl 0735.49029
[33] Mendlovitz, M. A., A simple solution to the \(ℓ_1\) optimization problem, Syst. Contr. Lett., 12, 461-463 (1989) · Zbl 0678.90056
[34] Packard, A.; Doyle, J. C., The complex structured singular value, Automatica (1992), (To appear.) · Zbl 0772.93023
[35] Shamma, J., Robust stability with time-varying structured uncertainty, IEEE Trans. Aut. Control (1992), (Submitted.)
[36] Sivashankar, N.; Khargonekar, P., \(L∞ -induced\) norm of sampled-data systems, (Proc. 1991 CDC (1991)) · Zbl 0802.93017
[37] Staffans, O. J., On the four-block model matching problem in \(ℓ_1\), (Report A289 (1990), Helsinki University of Technology: Helsinki University of Technology Espoo)
[38] Staffans, O. J., Mixed sensitivity minimization problems with rational \(ℓ_1\)-optimal solutions, J. of Optimization Theory and Applications, 70, 173-189 (1991) · Zbl 0743.90105
[39] Vidyasagar, M., Input-output analysis of large-scale interconnected systems, (Lecture Notes in Control and Information Sciences (1981), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0454.93002
[40] Vidyasagar, M., (Control Systems Synthesis: A Factorization Approach (1985), MIT press: MIT press Cambridge, MA) · Zbl 0655.93001
[41] Vidyasagar, M., Optimal rejection of persistent bounded disturbances, IEEE Trans. Aut. Control, 31, 527-534 (1986) · Zbl 0594.93050
[42] Voulgaris, P.; Dahleh, M. A.; Valavani, L., Slowly-varying systems: \(ℓ_∞\) to \(ℓ_∞\) performance implications to adaptive control, Automatica (1993), (Submitted.)
[43] Willems, J. C., (The Analysis of Feedback Systems (1971), MIT Press: MIT Press Cambridge, MA) · Zbl 0244.93048
[44] Youla, D. C.; Jabr, H. A.; Bongiorno, J. J., Modern Wiener-Hopf design of optimal controllers—part 2: the multivariable case, IEEE Trans. Aut. Control, 21, 319-338 (1976) · Zbl 0339.93035
[45] Zames, G., Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses, IEEE Trans. Aut. Control, 26, 301-320 (1981) · Zbl 0474.93025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.