Tran, Chieu-Minh; Walsberg, Erik A family of dp-minimal expansions of \((\mathbb{Z}; +)\). (English) Zbl 1537.03047 Notre Dame J. Formal Logic 64, No. 2, 225-238 (2023). The present paper concerns studying expansions of the additive group of integers by a ternary relation of an additive cyclic order. The authors show that such expansions are dp-minimal. They also prove that one can produce continuum of dp-minimal expansions of the additive group of integers up to definable equivalence. Thus, the authors obtain a result, which refutes a supposition that there are not too many dp-minimal expansions of this group. Reviewer: Beibut Kulpeshov (Almaty) MSC: 03C65 Models of other mathematical theories 03C64 Model theory of ordered structures; o-minimality 03C10 Quantifier elimination, model completeness, and related topics 03C40 Interpolation, preservation, definability Keywords:dp-minimality; cyclic order; additive cyclic order; additive group of integers; expansion; VC1 property; Sturmian sequence × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Alouf, E., and C. d’Elbée, “A new dp-minimal expansion of the integers,” Journal of Symbolic Logic, vol. 84 (2019), pp. 632-63. · Zbl 1468.03037 · doi:10.1017/jsl.2019.15 [2] Aschenbrenner, M., A. Dolich, D. Haskell, D. Macpherson, and S. Starchenko, “Vapnik-Chervonenkis density in some theories without the independence property, I,” Transactions of the American Mathematical Society, vol. 368 (2016), pp. 5889-949. · Zbl 1423.03119 · doi:10.1090/tran/6659 [3] Conant, G., “There are no intermediate structures between the group of integers and Presburger arithmetic,” Journal of Symbolic Logic, vol. 83 (2018), pp. 187-207. · Zbl 1447.03006 · doi:10.1017/jsl.2017.62 [4] Conant, G., and A. Pillay, “Stable groups and expansions of \((\mathbb{Z}, +, 0)\),” Fundamenta Mathematicae, vol. 242 (2018), pp. 267-79. · Zbl 1459.03042 · doi:10.4064/fm403-8-2017 [5] Dolich, A., and J. Goodrick, “Strong theories of ordered Abelian groups,” Fundamenta Mathematicae, vol. 236 (2017), pp. 269-96. · Zbl 1420.03065 · doi:10.4064/fm256-5-2016 [6] Gunaydin, A., “Model theory of fields with multiplicative groups,” Ph.D. dissertation, University of Illinois Urbana-Champaign, Champaign, Illinois. · Zbl 1099.83010 [7] Jahnke, F., P. Simon, and E. Walsberg, “Dp-minimal valued fields,” Journal of Symbolic Logic, vol. 82 (2017), pp. 151-65. · Zbl 1385.03040 · doi:10.1017/jsl.2016.15 [8] Johnson, W., “On dp-minimal fields,” preprint, arXiv:1507.02745v1 [math.LO]. · Zbl 1522.03115 [9] Lothaire, M., Algebraic Combinatorics on Words, vol. 90 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2002, · Zbl 1001.68093 · doi:10.1017/CBO9781107341005 [10] Onshuus, A., and A. Usvyatsov, “On dp-minimality, strong dependence and weight,” Journal of Symbolic Logic, vol. 76 (2011), pp. 737-58. · Zbl 1245.03053 · doi:10.2178/jsl/1309952519 [11] Shelah, S., “Dependent first order theories, continued,” Israel Journal of Mathematics, vol. 173 (2009), pp. 1-60. · Zbl 1195.03040 · doi:10.1007/s11856-009-0082-1 [12] Simon, P., A Guide to NIP Theories, vol. 44 of Lecture Notes in Logic, Association for Symbolic Logic, Chicago, 2015. · Zbl 1332.03001 · doi:10.1017/CBO9781107415133 [13] Teh, H.-H., “Construction of orders in Abelian groups,” Proceedings of the Cambridge Philosophical Society, vol. 57 (1961), pp. 476-82. · Zbl 0104.24603 [14] Tran, M. C., “Tame structures via character sums over finite fields,” preprint, arXiv:1704.03853v4 [math.LO]. [15] Weispfenning, V., “Elimination of quantifiers for certain ordered and lattice-ordered abelian groups,” Bulletin of the Belgian Mathematical Society, Series B, vol. 33 (1981), pp. 131-55. · Zbl 0499.03012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.