Möhle, M. A particular family of absolutely monotone functions and relations to branching processes. (English) Zbl 1538.26025 Anal. Math. 49, No. 2, 641-650 (2023). A function \(f: [0,1)\to\mathbb{R}\) is absolutely monotone if \(f^{(n)}(z)\ge 0\) for all \(n\ge 0\) and \(z\in [0,1)\). Clearly, if \(f\) is absolutely monotone, then all its derivatives are absolutely monotone, too. It is known that the following functions \(f: [0,1)\to \mathbb{R}\) are absolutely monotone:\(f(z)=-\ln(1-z)\);\(f(z)=\frac{1}{1-z}\);\(f(0)=0\) and \(f(z)=1+\frac{z}{\ln(1-z)}\) for \(z\in (0,1)\).In the paper under review, the author completes this list by showing that the map \[f(z)=\ln\left( 1-\frac{\ln(1-z)}{c}\right)\] is absolutely monotone if and only if \(c\ge 1\). Consequently, all derivatives of \(f\) are absolutely monotone if \(c\ge 1\). The motivation for studying such functions comes from the theory of continuous-time branching processes. Reviewer: Tomasz Natkaniec (Gdańsk) MSC: 26A48 Monotonic functions, generalizations 33B30 Higher logarithm functions 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) Keywords:absolute monotonicity; continuous-time branching process; Gautschi’s double inequality; integral representation; special functions; Stirling numbers PDFBibTeX XMLCite \textit{M. Möhle}, Anal. Math. 49, No. 2, 641--650 (2023; Zbl 1538.26025) Full Text: DOI References: [1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), New York: Dover, New York · Zbl 0543.33001 [2] Athreya, K. B.; Ney, P. E., Branching Processes (1972), New York: Springer, New York · Zbl 0259.60002 · doi:10.1007/978-3-642-65371-1 [3] Bernstein, S., Leçons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d’une Variable Réelle (1926), Paris: Gauthier-Villars, Paris · JFM 52.0256.02 [4] Flajolet, P.; Odlyzko, A., Singularity analysis of generating functions, SIAM J. Discrete Math., 3, 216-240 (1990) · Zbl 0712.05004 · doi:10.1137/0403019 [5] Gautschi, W., Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. Phys., 38, 77-81 (1959) · Zbl 0094.04104 · doi:10.1002/sapm195938177 [6] Harris, T. E., The Theory of Branching Processes (1963), Berlin: Springer, Berlin · Zbl 0117.13002 · doi:10.1007/978-3-642-51866-9 [7] Möhle, M.; Vetter, B., Asymptotics of continuous-time discrete state space branching processes for large initial state, Markov Process. Related Fields, 27, 1-42 (2021) · Zbl 1480.60264 [8] F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl., 2010, Article ID 493058, 84 pp. · Zbl 1194.33005 [9] Steutel, F. W.; Van Harn, K., Infinite Divisibility of Probability Distributions on the Real Line (2004), New York: Marcel Dekker Inc., New York · Zbl 1063.60001 [10] Widder, D. V., The Laplace Transform (1941), Princeton: Princeton University Press, Princeton · JFM 67.0384.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.