×

Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management. (English) Zbl 07729497

Summary: The aim of this paper is solving an intuitionistic fuzzy multi-objective linear programming problem containing intuitionistic fuzzy parameters, intuitionistic fuzzy maximization/minimization, and intuitionistic fuzzy constraints. To do this, a linear ranking function is used to convert the intuitionistic fuzzy parameters to crisp ones first. Then, linear membership and non-membership functions are used to manipulate intuitionistic fuzzy maximization/minimization and intuitionistic fuzzy constraints. Then, a multi-objective optimization problem is formulated containing maximization of membership functions and minimization of non-membership functions. To solve this problem, the minimax and weighted sum methods are used. Then, the described procedure is summarized as an algorithm to solve the problem, and a numerical example is solved by the proposed method. Finally, to investigate the capability and performance of the model, a supplier selection problem, which is one of the important applications in supply chain management, is solved by the proposed algorithm.

MSC:

90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
03F55 Intuitionistic mathematics
90B06 Transportation, logistics and supply chain management
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahmadini, A. A. H.; Ahmad, F., Solving intuitionistic fuzzy multiobjective linear programming problem under neutrosophic environment, AIMS Math. 6 (2021), 4556-4580 · doi:10.3934/math.2021269
[2] Amid, A.; Ghodsypour, S. H.; O’Brien, C., A weighted max-min model for fuzzy multi-objective supplier selection in a supply chain, Int. J. Prod. Econ. 131 (2011), 139-145 · doi:10.1016/j.ijpe.2010.04.044
[3] Angelov, P. P., Optimization in an intuitionistic fuzzy environment, Fuzzy Sets Syst. 86 (1997), 299-306 · Zbl 0915.90258 · doi:10.1016/S0165-0114(96)00009-7
[4] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87-96 · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[5] Bharati, S. K.; Singh, S. R., Solution of multiobjective linear programming problems in interval-valued intuitionistic fuzzy environment, Soft Comput. 23 (2019), 77-84 · Zbl 1415.90115 · doi:10.1007/s00500-018-3100-6
[6] Chang, K.-H., A novel supplier selection method that integrates the intuitionistic fuzzy weighted averaging method and a soft set with imprecise data, Ann. Oper. Res. 272 (2019), 139-157 · Zbl 1434.90018 · doi:10.1007/s10479-017-2718-6
[7] Ehrgott, M., Multicriteria Optimization, Springer, Berlin (2005) · Zbl 1132.90001 · doi:10.1007/3-540-27659-9
[8] Garg, H., A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems, Appl. Soft Comput. 38 (2016), 988-999 · doi:10.1016/j.asoc.2015.10.040
[9] Kabiraj, A.; Nayak, P. K.; Raha, S., Solving intuitionistic fuzzy linear programming problem, Int. J. Intelligence Sci. 9 (2019), 44-58 · doi:10.4236/ijis.2019.91003
[10] Li, D.-F., A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems, Comput. Math. Appl. 60 (2010), 1557-1570 · Zbl 1202.91054 · doi:10.1016/j.camwa.2010.06.039
[11] Li, D.-F., Linear programming method for MADM with interval-valued intuitionistic fuzzy sets, Expert Syst. Appl. 37 (2010), 5939-5945 · doi:10.1016/j.eswa.2010.02.011
[12] Malhotra, R.; Bharati, S. K., Intuitionistic fuzzy two stage multiobjective transportation problems, Adv. Theor. Appl. Math. 11 (2016), 305-316
[13] Mohan, S.; Kannusamy, A. P.; Sidhu, S. K., Solution of intuitionistic fuzzy linear programming problem by dual simplex algorithm and sensitivity analysis, Comput. Intell. 37 (2021), 852-872 · doi:10.1111/coin.12435
[14] Qu, G.; Qu, W.; Zhang, Z.; Wang, J., Choquet integral correlation coefficient of intuitionistic fuzzy sets and its applications, J. Intell. Fuzzy Syst. 33 (2017), 543-553 · Zbl 1376.68134 · doi:10.3233/JIFS-162131
[15] Sakawa, M., Fuzzy Sets and Interactive Multiobjective Optimization, Springer, New York (1993) · Zbl 0842.90070 · doi:10.1007/978-1-4899-1633-4
[16] Singh, S. K.; Yadav, S. P., Modeling and optimization of multi objective non-linear programming problem in intuitionistic fuzzy environment, Appl. Math. Modelling 39 (2015), 4617-4629 · Zbl 1443.90067 · doi:10.1016/j.apm.2015.03.064
[17] Singh, S. K.; Yadav, S. P., A new approach for solving intuitionistic fuzzy transportation problem of type-2, Ann. Oper. Res. 243 (2016), 349-363 · Zbl 1348.90658 · doi:10.1007/s10479-014-1724-1
[18] Tooranloo, H. S.; Iranpour, A., Supplier selection and evaluation using interval-valued intuitionistic fuzzy AHP method, Int. J. Procurement Management 10 (2017), 539-554 · doi:10.1504/IJPM.2017.086399
[19] Wan, S.; Dong, J., A possibility degree method for interval-valued intuitionistic fuzzy multi-attribute group decision making, J. Comput. Syst. Sci. 80 (2014), 237-256 · Zbl 1311.68156 · doi:10.1016/j.jcss.2013.07.007
[20] Wan, S.; Dong, J., A novel extension of best-worst method with intuitionistic fuzzy reference comparisons, IEEE Trans. Fuzzy Syst. 30 (2022), 1698-1711 · doi:10.1109/TFUZZ.2021.3064695
[21] Wan, S.-P.; Li, D.-F., Atanassov’s intuitionistic fuzzy programming method for heterogeneous multiattribute group decision making with Atanassov’s intuitionistic fuzzy truth degrees, IEEE Trans. Fuzzy Syst. 22 (2013), 300-312 · doi:10.1109/TFUZZ.2013.2253107
[22] Wan, S.-P.; Li, D.-F., Fuzzy mathematical programming approach to heterogeneous multiattribute decision-making with interval-valued intuitionistic fuzzy truth degrees, Inf. Sci. 325 (2015), 484-503 · Zbl 1390.91119 · doi:10.1016/j.ins.2015.07.014
[23] Wan, S.-P.; Wang, F.; Dong, J.-Y., A novel group decision making method with intuitionistic fuzzy preference relations for RFID technology selection, Appl. Soft Comput. 38 (2016), 405-422 · doi:10.1016/j.asoc.2015.09.039
[24] Wan, S.-P.; Wang, F.; Lin, L.-L.; Dong, J.-Y., An intuitionistic fuzzy linear programming method for logistics outsourcing provider selection, Knowledge-Based Syst. 82 (2015), 80-94 · doi:10.1016/j.knosys.2015.02.027
[25] Wan, S.-P.; Wang, F.; Xu, G.-L.; Dong, J.-Y.; Tang, J., An intuitionistic fuzzy programming method for group decision making with interval-valued fuzzy preference relations, Fuzzy Optim. Decis. Mak. 16 (2017), 269-295 · Zbl 1428.90090 · doi:10.1007/s10700-016-9250-z
[26] Wei, A.-P.; Li, D.-F.; Lin, P.-P.; Jiang, B.-Q., An information-based score function of interval-valued intuitionistic fuzzy sets and its application in multiattribute decision making, Soft Comput. 25 (2021), 1913-1923 · Zbl 1491.03070 · doi:10.1007/s00500-020-05265-0
[27] Ye, J., Expected value method for intuitionistic trapezoidal fuzzy multicriteria decision-making problems, Expert Syst. Appl. 38 (2011), 11730-11734 · doi:10.1016/j.eswa.2011.03.059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.