A generalization of the classical Euler and Korteweg fluids. (English) Zbl 07729508

Summary: The aim of this short paper is threefold. First, we develop an implicit generalization of a constitutive relation introduced by D. J. Korteweg [Arch. Néerl. (2) 6, 1–24 (1901; JFM 32.0756.02)] that can describe the phenomenon of capillarity. Second, using a sub-class of the constitutive relations (implicit Euler equations), we show that even in that simple situation more than one of the members of the sub-class may be able to describe one or a set of experiments one is interested in describing, and we must determine which amongst these constitutive relations is the best by culling the class by systematically comparing against an increasing set of observations. (The implicit generalization developed in this paper is not a sub-class of the implicit generalization of the Navier-Stokes fluid developed by K. R. Rajagopal [Appl. Math., Praha 48, No. 4, 279–319 (2003; Zbl 1099.74009); J. Fluid Mech. 550, 243–249 (2006; Zbl 1097.76009)] or the generalization due to V. Průša and K. R. Rajagopal [J. Non-Newton. Fluid Mech. 181–182, 22–29 (2012; doi:10.1016/j.jnnfm.2012.06.004)], as spatial gradients of the density appear in the constitutive relation developed by Korteweg [loc. cit.].) Third, we introduce a challenging set of partial differential equations that would lead to new techniques in both analysis and numerical analysis to study such equations.


35Q53 KdV equations (Korteweg-de Vries equations)
35Q31 Euler equations
Full Text: DOI arXiv


[1] Blechta, J.; Málek, J.; Rajagopal, K. R., On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion, SIAM J. Math. Anal. 52 (2020), 1232-1289 · Zbl 1432.76075 · doi:10.1137/19M1244895
[2] Coleman, B. D.; Noll, W., An approximation theorem for functionals, with applications in continuum mechanics, Arch. Ration. Mech. Anal. 6 (1960), 355-370 · Zbl 0097.16403 · doi:10.1007/BF00276168
[3] Euler, L., Sur le mouvement de l’eau par des tuyaux de conduite, Mémoires de l’académie des sciences de Berlin 8 (1754), 111-148 French Available at https://scholarlycommons.pacific.edu/euler-works/206\kern0pt
[4] Euler, L., Principes généraux du mouvement des fluides, Mémoires de l’académie des sciences de Berlin 11 (1757), 274-315 French Available at https://scholarlycommons.pacific.edu/euler-works/226/\kern0pt
[5] Euler, L., Principia motus fluidorum, Novi Commentarii academiae scientiarum Petro-politanae 6 (1761), 271-311 Latin Available at https://scholarlycommons.pacific.edu/euler-works/258/\kern0pt
[6] Fosdick, R. L.; Rajagopal, K. R., On the existence of a manifold for temperature, Arch. Ration. Mech. Anal. 81 (1983), 317-332 · doi:10.1007/BF00250858
[7] Goodman, M. A.; Cowin, S. C., A continuum theory for granular materials, Arch. Ration. Mech. Anal. 44 (1972), 249-266 · Zbl 0243.76005 · doi:10.1007/BF00284326
[8] Green, G., On the laws of the reflexion and refraction of light at the common surface of two non-crystallized media, Cambr. Phil. Soc. 7 (1837), 1-24 \99999JFM99999 03.0565.01 · doi:10.1017/CBO9781107325074.009
[9] Hutter, K.; Rajagopal, K. R., On flows of granular materials, Contin. Mech. Thermodyn. 6 (1994), 81-139 · Zbl 0804.73003 · doi:10.1007/BF01140894
[10] Korteweg, D. J., Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité, Arch. Néerl. (2) 6 (1901), 1-24 French \99999JFM99999 32.0756.02
[11] Roux, C. Le; Rajagopal, K. R., Shear flows of a new class of power-law fluids, Appl. Math., Praha 58 (2013), 153-177 · Zbl 1274.76039 · doi:10.1007/s10492-013-0008-4
[12] Málek, J.; Průša, V.; Rajagopal, K. R., Generalizations of the Navier-Stokes fluid from a new perspective, Int. J. Eng. Sci. 48 (2010), 1907-1924 · Zbl 1231.76073 · doi:10.1016/j.ijengsci.2010.06.013
[13] Málek, J.; Rajagopal, K. R., On the modeling of inhomogeneous incompressible fluid-like bodies, Mech. Mater. 38 (2006), 233-242 · doi:10.1016/j.mechmat.2005.05.020
[14] Málek, J.; Rajagopal, K. R., Compressible generalized Newtonian fluids, Z. Angew. Math. Phys. 61 (2010), 1097-1110 · Zbl 1273.76025 · doi:10.1007/s00033-010-0061-8
[15] Maxwell, J. C., Theory of Heat, Green and Co., London (1871),\99999JFM99999 24.1095.01 · doi:10.1017/CBO9781139057943
[16] McLeod, J. B.; Rajagopal, K. R.; Wineman, A. S., On the existence of a class of deformations for incompressible isotropic elastic materials, Proc. R. Ir. Acad., Sect. A 88 (1988), 91-101 · Zbl 0676.73015
[17] Noll, W., A mathematical theory of the mechanical behavior of continuous media, Arch. Ration. Mech. Anal. 2 (1958), 198-226 · Zbl 0083.39303 · doi:10.1007/BF00277929
[18] Perlácová, T.; Průša, V., Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids, J. Non-Newton. Fluid Mech. 216 (2015), 13-21 · doi:10.1016/j.jnnfm.2014.12.006
[19] Průša, V.; Rajagopal, K. R., On implicit constitutive relations for materials with fading memory, J. Non-Newton. Fluid Mech. 181-182 (2012), 22-29 · doi:10.1016/j.jnnfm.2012.06.004
[20] Rajagopal, K. R., On implicit constitutive theories, Appl. Math., Praha 48 (2003), 279-319 · Zbl 1099.74009 · doi:10.1023/A:1026062615145
[21] Rajagopal, K. R., On implicit constitutive theories for fluids, J. Fluid Mech. 550 (2006), 243-249 · Zbl 1097.76009 · doi:10.1017/S0022112005008025
[22] Rajagopal, K. R., The elasticity of elasticity, Z. Angew. Math. Phys. 58 (2007), 309-317 · Zbl 1113.74006 · doi:10.1007/s00033-006-6084-5
[23] Rajagopal, K. R., A note on the classification of anisotropy of bodies defined by implicit constitutive relations, Mech. Res. Commun. 64 (2015), 38-41 · doi:10.1016/j.mechrescom.2014.11.005
[24] Rajagopal, K. R., Remarks on the notion of “pressure”, Int. J. Non-Linear Mech. 71 (2015), 165-172 · doi:10.1016/j.ijnonlinmec.2014.11.031
[25] Rajagopal, K. R.; Wineman, A., On constitutive equations for branching of response with selectivity, Int. J. Non-Linear Mech. 15 (1980), 83-91 · Zbl 0442.73002 · doi:10.1016/0020-7462(80)90002-5
[26] Souček, O.; Heida, M.; Málek, J., On a thermodynamic framework for developing boundary conditions for Korteweg-type fluids, Int. J. Eng. Sci. 154 (2020), Article ID 103316, 27 pages · Zbl 07228661 · doi:10.1016/j.ijengsci.2020.103316
[27] Spencer, A. J. M., Theory of invariants, Continuum Physics. Vol. 1 Academic Press, New York (1971), 239-353 · doi:10.1016/B978-0-12-240801-4.50008-X
[28] Truesdell, C. A., A First Course in Rational Continuum Mechanics. Vol. 1. General Concepts, Pure and Applied Mathematics 71. Academic Press, New York (1977) · Zbl 0357.73011
[29] Truesdell, C.; Noll, W., The Non-Linear Field Theories of Mechanics, Springer, Berlin (2004) · Zbl 1068.74002 · doi:10.1007/978-3-662-10388-3
[30] Truesdell, C.; Rajagopal, K. R., An Introduction to the Mechanics of Fluids, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2000) · Zbl 0942.76001 · doi:10.1007/978-0-8176-4846-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.