# zbMATH — the first resource for mathematics

How to explicitly solve a Thue-Mahler equation. (English) Zbl 0773.11023
Let $$F(X,Y)\in\mathbb{Z}[X,Y]$$ be a homogeneous, irreducible polynomial of degree $$n\geq 3$$; $$p_ 1,\dots,p_ v$$ be distinct rational primes and $$c\in\mathbb{Z}$$. The aim of this paper is to present a practical method for the resolution of the Thue-Mahler equation $F(X,Y)=cp_ 1^{z_ 1}\cdot\dots\cdot p^{z_ v}_ v$ in $$(X,Y,z_ 1,\dots,z_ v)\in\mathbb{Z}^ 2\times\mathbb{Z}^ v_{\geq 0}$$ under the natural assumption $$(X,Y)=1$$. The method is based on the combination of lower bounds for linear forms in complex and $$p$$-adic logarithms of algebraic numbers with numerical diophantine approximation techniques.
Although the basic ideas are the same as in [Math. Comput. 57, 799-815 (1991; Zbl 0738.11029)] by the same authors, there are involved in the new method considerable improvements. The first is “The Prime Ideal Removing Lemma” in section 5, which makes it possible to reduce the number of linear forms to be analysed. The second is the combination of the LLL-reduction steps with the Fincke-Pohst method in section 17. In section 18 a new sieving procedure is described for the localization of small solutions of $$S$$-unit equations.
The method is demonstrated on the resolution of the equation $x^ 3- 23x^ 2y+5xy^ 2+24y^ 3=\pm 2^{z_ 1}3^{z_ 2}5^{z_ 3}7^{z_ 4}.$ It is proved that this equation has 72 solutions with $$x\geq 0$$.

##### MSC:
 11D57 Multiplicative and norm form equations 11Y50 Computer solution of Diophantine equations
##### Keywords:
algorithm; Thue-Mahler equation
Full Text:
##### References:
 [1] A K. Agrawal, J. Coates, D. C. Hunt and A.J. Van Der Poorten , Elliptic curves of conductor 11 , Math. Comput. 35 (1980), 991-1002. · Zbl 0475.14031 [2] W.E.H. Berwick , Algebraic number-fields with two independent units , Proc. London Math. Soc. 34 (1932), 360-378. · Zbl 0005.34203 [3] J. Blass , A.M.W. Glass , D.K. Manski , D.B. Meronk and R.P. Steiner , Constants for lower bounds for linear forms in logarithms of algebraic numbers II. The homogeneous rational case , Acta Arith. 55 (1990), 15-22. · Zbl 0709.11037 [4] K.K. Billevič , On the units of algebraic fields of third and fourth degree (Russian) , Mat. Sb. 40, 82 (1956), 123-137. · Zbl 0078.02901 [5] K.K. Billevič , A theorem on the units of algebraic fields of nth degree, (Russian) , Mat. Sb. 64, 106 (1964), 145-152. [6] Z.I. Borevich and I.R. Shafarevich , Number theory , Academic Press, New York, London, 1973. · Zbl 0145.04902 [7] J. Buchmann , The generalized Voronoi algorithm in totally real algebraic number fields , Eurocal ’85, Linz 1985, Vol. 2, Lecture Notes in Comput. Sci. 204, Springer, Berlin, New York, 1985, pp. 479-486. · Zbl 0586.12004 [8] J. Buchmann , A generalization of Voronoi’s unit algorithm I , J. Number Th. 20 (1986), 177-191. · Zbl 0575.12005 [9] J. Buchmann , A generalization of Voronoi’s unit algorithm II , J. Number Th. 20 (1986), 192-209. · Zbl 0575.12005 [10] J. Buchmann , On the computation of units and class numbers by a generalization of Lagrange’s algorithm , J. Number Th. 26 (1987), 8-30. · Zbl 0615.12001 [11] J. Buchmann , The computation of the fundamental unit of totally complex quartic orders , Math. Comput. 48 (1987), 39-54. · Zbl 0627.12004 [12] B.N. Delone and D.K. Faddeev , The theory of irrationalities of the third degree , Vol. 10, Transl. of Math. Monographs, Am. Math. Soc, Rhode Island, 1964. · Zbl 0133.30202 [13] J.-H. Evertse , On equations in S-units and the Thue-Mahler equation , Invent. Math. 75 (1984), 561-584. · Zbl 0521.10015 [14] U. Fincke and M. Pohst , Improved methods for calculating vectors of short length in a lattice, including a complexity analysis , Math. Comput. 44 (1985), 463-471. · Zbl 0556.10022 [15] N. Koblitz , p-adic numbers, p-adic analysis, and zeta-functions , Springer Verlag, New York, 1977. · Zbl 0364.12015 [16] A K. Lenstra, H. W. Lenstra Jr. and L. Lovász , Factoring polynomials with rational coefficients , Math. Ann. 261 (1983), 515-534. · Zbl 0488.12001 [17] K. Mahler , Zur Approximation algebraischer Zahlen, I: Über den grössten Primteiler binärer Formen , Math. Ann. 107 (1933), 691-730. · Zbl 0006.10502 [18] W. Narkiewicz , Elementary and analytic theory of algebraic numbers , Polish Scientific Publishers, Warszawa, 1974. · Zbl 0276.12002 [19] W. Narkiewicz , Elementary and analytic theory of algebraic numbers , 2nd ed., Polish Scientific Publishers, Warszawa, 1990. · Zbl 0717.11045 [20] A. Pethö and B.M.M. De Weger , Products of prime powers in binary recurrence sequences I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation , Math. Comput. 47 (1986), 713-727. · Zbl 0623.10011 [21] M. Pohst and H. Zassenhaus , On effective computation of fundamental units I , Math. Comput. 38 (1982), 275-291. · Zbl 0493.12004 [22] M. Pohst , P. Weiler and H. Zassenhaus , On effective computation of fundamental units II , Math. Comput. 38 (1982), 293-329. · Zbl 0493.12005 [23] M. Pohst and H. Zassenhaus , Algorithmic algebraic number theory , Cambridge University Press, Cambridge, 1989. · Zbl 0685.12001 [24] J. Graf Von Schmettow , KANT - a tool for computations in algebraic number fields , A. Pethö, M. Pohst, H. C. Williams and H. G. Zimmer, eds., Computational Number Theory , Walter de Gruyter & Co., Berlin, 1991, pp. 321-330. · Zbl 0731.11070 [25] V.G. Sprindžuk , Classical diophantine equations in two unknowns (Russian) , Nauka, Moskva, 1982. · Zbl 0523.10008 [26] T.N. Shorey and R. Tijdeman , Exponential diophantine equations , Cambridge University Press, Cambridge, 1986. · Zbl 0606.10011 [27] A. Thue , Über Annäherungswerten algebraischer Zahlen , J. reine angew. Math. 135 (1909), 284-305. · JFM 40.0265.01 [28] N. Tzanakis and B.M.M. De Weger , On the practical solution of the Thue equation , J. Number Th. 31 (1989), 99-132. · Zbl 0657.10014 [29] N. Tzanakis and B.M.M. De Weger , Solving a specific Thue-Mahler equation , Math. Comput. 57 (No. 196) (1991), 799-815. · Zbl 0738.11029 [30] N. Tzanakis and B.M.M. Deweger , ” On the practical solution of the Thue-Mahler equation , A. Pethö, M. Pohst, H. C. Williams and H. G. Zimmer, eds., Computational Number Theory , Walter de Gruyter & Co., Berlin, 1991, pp. 289-294. · Zbl 0738.11030 [31] M. Waldschmidt , A lower bound for linear forms in logarithms , Acta Arith. 37 (1980), 257-283. · Zbl 0357.10017 [32] B.M.M. De Weger , Algorithms for diophantine equations , CWI-Tract No. 65, Centre for Math. and Comp. Sci., Amsterdam, 1989. · Zbl 0687.10013 [33] B.M.M. De Weger , On the practical solution of Thue-Mahler equations, an outline , K. Györy and G. Halász, eds., Number Theory , Coll. Math. Soc. János Bolyai, Vol. 51, Budapest, 1990, pp. 1037-1050. · Zbl 0703.11014 [34] Kunrui Yu , Linear forms in p-adic logarithms , Acta Arith. 53 (1989), 107-186. · Zbl 0699.10050 [35] Kunrui Yu , Linear forms in p-adic logarithms II , Compositio Math. 74 (1990), 15-113. · Zbl 0723.11034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.