Anderson, D. D.; Anderson, David F. Elasticity of factorizations in integral domains. (English) Zbl 0773.13003 J. Pure Appl. Algebra 80, No. 3, 217-235 (1992). Let \(R\) be an integral domain with quotient field \(K\). If \(R\) is a UFD, then any two factorization of a nonzero nonunit of \(R\) into the product of irreducible elements have the same length. Of course, this is not true for an arbitrary atomic integral domain (an integral domain \(R\) is atomic if each nonzero nonunit is the product of irreducible elements (atoms)). In the language of Zariski-Samuel an atomic domain is a domain satisfying the condition UF1: each nonzero nonunit is the product of irreducible elements. Following A. Zaks [Bull. Amer. Math. Soc. 82, 721-723 (1976; Zbl 0338.13020)] we define \(R\) to be a half-factorial domain (HFD) if \(R\) is atomic and whenever \(x_ 1\cdots x_ m=y_ 1\cdots y_ n\) with each \(x_ i,y_ i\in R\) irreducible, then \(m=n\). A UFD is obviously a HFD, but the converse fails since any Krull domain \(R\) with divisor class group \(\text{Cl}(R)=\mathbb{Z}_ 2\) is a HFD, but not a UFD. In order to measure how far an atomic domain \(R\) is from being a HFD, we define \(\rho(R)=\sup\{m/n| x_ 1\cdots x_ m=y_ 1\cdots y_ n\), each \(x_ i,y_ j\in R\) is irreducible}. Thus \(1\leq\rho(R)\leq\infty\), and \(\rho(R)=1\) if and only if \(R\) is a HFD. \(\rho(R)\) is called the elasticicty of \(R\) and was introduced by R. J. Valenza, who studied \(\rho(R)\) for \(R\) the ring of integers in an algebraic number field. In particular, he showed that \(\rho(R)\leq\max\{h/2,1\}\), where \(R\) has class number \(h\). In an earlier appearing (but later submitted) paper, J.- L. Steffan studied \(\rho(R)\) (without this notation) for a Dedekind domain \(R\) with finite divisor class group and showed that \(\rho(R)\leq\max\{|\text{Cl}(R)|/2,1\}\) [cf. J. Algebra 102, 229- 236 (1986; Zbl 0593.13015)].The purpose of this paper is to study \(\rho(R)\) for an arbitrary atomic domain \(R\), but with emphasis on Krull domains. The impetus for much of this study of factorization properties goes back to the study of factorization in rings of algebraic integers, in particular, to the result of L. Carlitz that the ring of integers in an algebraic number field is a HFD if and only if it has a class number \(\leq 2\). Reviewer: E.Stagnaro (Padova) Cited in 2 ReviewsCited in 48 Documents MSC: 13F15 Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial) 13G05 Integral domains 13C20 Class groups 11R29 Class numbers, class groups, discriminants Keywords:atomic integral domain; half-factorial domain; elasticicty; Krull domain Citations:Zbl 0338.13020; Zbl 0593.13015 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Anderson, D. D., Some finiteness conditions on a commutative ring, Houston J. Math, 4, 289-299 (1978) · Zbl 0401.13009 [2] Anderson, D. D.; Anderson, D. F.; Zafrullah, M., Factorization in integral domains, J. Pure Appl. Algebra, 69, 1-19 (1990) · Zbl 0727.13007 [3] Anderson, D. D.; Anderson, D. F.; Zafrullah, M., Rings between \(D[X]\) and \(K[X]\), Houston J. Math., 17, 109-129 (1991) · Zbl 0736.13015 [4] Anderson, D. D.; Mahaney, L. A., On primary factorizations, J. Pure Appl. Algebra, 54, 141-154 (1988) · Zbl 0665.13004 [5] D.D. Anderson and J.L. Mott, Cohen-Kaplansky domains: integral domains with a finite number of irreducible elements, J. Algebra, to appear.; D.D. Anderson and J.L. Mott, Cohen-Kaplansky domains: integral domains with a finite number of irreducible elements, J. Algebra, to appear. · Zbl 0773.13005 [6] D.D. Anderson, J.L. Mott and M. Zafrullah, Finite character representations for integral domains, Boll. Un. Mat. Ital. D, to appear.; D.D. Anderson, J.L. Mott and M. Zafrullah, Finite character representations for integral domains, Boll. Un. Mat. Ital. D, to appear. · Zbl 0773.13004 [7] Anderson, D. D.; Zafrullah, M., Weakly factorial domains and groups of divisibility, Proc. Amer. Math. Soc., 109, 907-913 (1990) · Zbl 0704.13008 [8] Anderson, D. F., Subrings of \(k[X, Y]\) generated by monomials, Canad. J. Math., 30, 215-224 (1978) · Zbl 0395.13002 [9] Anderson, D. F., A general theory of class groups, Comm. Algebra, 16, 805-847 (1988) · Zbl 0648.13002 [10] Anderson, D. F.; Pruis, P., Length functions on integral domains, Proc. Amer. Math. Soc., 113, 933-937 (1991) · Zbl 0738.13018 [11] Bouvier, A., Le groupe des classes d’un anneau intégré, 107ème Congrès National des Sociétés Savantes,, IV, 85-92 (1982), Brest, Fasc. [12] Brewer, J.; Rutter, E. A., \(D+M\) constructions with general overrings, Michigan Math. J., 23, 33-42 (1976) · Zbl 0318.13007 [13] Carlitz, L., A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc., 11, 391-392 (1960) · Zbl 0202.33101 [14] Chapman, S.; Smith, W. W., Factorization in Dedekind domains with finite class group, Israel J. Math., 71, 65-95 (1990) · Zbl 0717.13014 [15] S. Chapman and W.W. Smith, On the HFD, CHFD, and \(k\); S. Chapman and W.W. Smith, On the HFD, CHFD, and \(k\) · Zbl 0761.13010 [16] S. Chapman and W.W. Smith, An analysis using the Zaks-Skula constant of element factorizations in Dedekind domains, J. Algebra, to appear.; S. Chapman and W.W. Smith, An analysis using the Zaks-Skula constant of element factorizations in Dedekind domains, J. Algebra, to appear. · Zbl 0784.11050 [17] Chevalley, C., La notion d’anneau de décomposition, Nagoya Math. J., 7, 21-33 (1954) · Zbl 0057.27003 [18] Claborn, L., Specified relations in the ideal group, Michigan Math. J., 15, 249-255 (1968) · Zbl 0159.33302 [19] Fossum, R. M., The Divisor Class Group of a Krull Domain (1973), Springer: Springer New York · Zbl 0256.13001 [20] A. Geroldinger and R. Schneider, On Davenport’s constant, J. Combin. Theory, to appear.; A. Geroldinger and R. Schneider, On Davenport’s constant, J. Combin. Theory, to appear. · Zbl 0759.20008 [21] Gilmer, R., Multiplicative Ideal Theory (1972), Dekker: Dekker New York · Zbl 0248.13001 [22] Gilmer, R., Commutative Semigroup Rings, (Chicago Lectures in Mathematics (1984), University of Chicago Press: University of Chicago Press Chicago, IL) · Zbl 0169.05403 [23] Grams, A., Atomic domains and the ascending chain condition for principal ideals, Math. Proc. Cambridge Philos. Soc., 75, 321-329 (1974) · Zbl 0287.13002 [24] Grams, A., The distribution of prime ideals of a Dedekind domain, Bull. Austral. Math. Soc., 11, 429-441 (1974) [25] Michel, D.; Steffan, J. L., Répartitions des indéaux premiers parmi les classes d’idéaux d’un anneau de Dedekind, J. Algebra, 98, 82-94 (1986) · Zbl 0603.13004 [26] Nagata, M., Local Rings (1962), Interscience: Interscience New York · Zbl 0123.03402 [27] Skula, L., On \(c\)-semigroups, Acta Arith., 31, 247-257 (1976) · Zbl 0303.13014 [28] Steffan, J. L., Longueurs des décompositions en produits d’éléments irréductibles dans un anneau de Dedekind, J. Algebra, 102, 229-236 (1986) · Zbl 0593.13015 [29] Valenza, R. J., Elasticity of factorizations in number fields, J. Number Theory, 36, 212-218 (1990) · Zbl 0721.11043 [30] Zaks, A., Half-factorial domains, Bull. Amer. Math. Soc., 82, 721-724 (1976) · Zbl 0338.13020 [31] Zaks, A., Half-factorial domains, Israel J. Math., 37, 281-302 (1980) · Zbl 0509.13017 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.