×

On the construction of multivariate (pre)wavelets. (English) Zbl 0773.41013

Summary: A new approach for the construction of wavelets and prewavelets on \(\mathbb{R}^ d\) from multiresolution is presented. The method uses only properties of shift-invariant spaces and orthogonal projectors from \(L_ 2(\mathbb{R}^ d)\) onto these spaces, and requires neither decay nor stability of the scaling function. Furthermore, this approach allows a simple derivation of previous, as well as new, constructions of wavelets, and leads to a complete resolution of questions concerning the natura of the intersection and the union of a scale of spaces to be used in a multiresolution.

MSC:

41A15 Spline approximation
41A63 Multidimensional problems
41A30 Approximation by other special function classes
46C99 Inner product spaces and their generalizations, Hilbert spaces
42B99 Harmonic analysis in several variables
46E20 Hilbert spaces of continuous, differentiable or analytic functions
Full Text: DOI

References:

[1] [B]G. Battle (1987):A block spin construction of ondelettes, Part I: Lemarie functions. Comm. Math. Phys.,110:601-615. · doi:10.1007/BF01205550
[2] [BR]A. Ben-Artzi, A. Ron (1990):On the integer translates of a compactly supported function: dual bases and linear projectors SIAM J. Math. Anal.,21:1550-1562. · Zbl 0721.41021 · doi:10.1137/0521085
[3] [BS]C. Bennett, R. Sharpley (1988): Interpolation of Operators. Pure and Applied Mathematics, vol. 129. New York: Academic Press. · Zbl 0647.46057
[4] [BD]C. de Boor, R. DeVore (1983):Approximation by smooth multivariate splines. Trans. Amer. Math. Soc.,276:775-788. · Zbl 0529.41010 · doi:10.1090/S0002-9947-1983-0688977-5
[5] [BDR]C. de Boor, R. DeVore, A. Ron (to appear):Approximation from shift-invariant subspaces of L 2(R d ). Trans. Amer. Math. Soc.
[6] [BDR1]C. de Boor, R. DeVore, A. Ron (to appear):The structure of finitely generated shift-invariant spaces in L 2(R d ), J. Period Functional Anal.
[7] [CW]C. K. Chui, J. Z. Wang (1992):A general framework for compactly supported splines and wavelets. J. Approx. Theory,71:263-304. · Zbl 0774.41013 · doi:10.1016/0021-9045(92)90120-D
[8] [CW1]C. K. Chui, J. Z. Wang (1992):On compactly supported spline wavelets and a duality principle. Trans. Amer. Math. Soc.,330:903-912. · Zbl 0759.41008 · doi:10.2307/2153941
[9] [CSW]C. K. Chui, J. Stöckler, J. D. Ward (1992):Compactly supported box spline wavelets. Approx. Theory & Appl.,8:77-100. · Zbl 0766.41010
[10] [D]I. Daubechies (1988):Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.,XLI:909-996. · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[11] [D1]I. Daubechies (1990):The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory,36:961-1005. · Zbl 0738.94004 · doi:10.1109/18.57199
[12] [DR]N. Dyn, A. Ron (1990):Local approximation by certain spaces of multivariate exponential-polynomials, approximation order of exponential box splines and related interpolation problems. Trans. Amer. Math. Soc.,319:381-404. · Zbl 0699.41012 · doi:10.2307/2001350
[13] [JM]R. Q. Jia, C. A. Micchelli (1991):Using the refinement equation for the construction of pre-wavelets, II: powers of two. In: Curves and Surfaces (P. J. Laurent, A. Le Méhauté, L. L. Schumaker, eds.), New York: Academic Press, pp. 209-246. · Zbl 0777.41013
[14] [JM1]R.-Q. Jia, C. A. Micchelli (1991): Using the Refinement Equation for the Construction of Pre-Wavelets, V: Extensibility of Trigonometric Polynomials. RC 17196, IBM. · Zbl 0765.65023
[15] [JW]R.-Q. Jia, J. Z. Wang (to appear):Stability and linear independence associated with wavelet decompositions. Proc. Amer. Math. Soc.
[16] [LM]R. A. H. Lorentz, W. R. Madych (1991): Wavelets and generalized box splines. Arbeitspapiere der GMD No. 563. · Zbl 0725.41009
[17] [Ma]S. G. Mallat (1989):Multiresolution approximations and wavelet orthonormal bases of L 2(R). Trans. Amer. Math. Soc.,315:69-87. · Zbl 0686.42018
[18] [Me]Y. Meyer (1980): Ondelettes et Opérateurs I: Ondelettes. Paris: Hermann.
[19] [Mi]C. A. Micchelli (1991):Using the refinement equation for the construction of pre-wavelets. Numer. Algorithms,1:75-116. · Zbl 0759.65005 · doi:10.1007/BF02145583
[20] [Mi1]C. A. Micchelli (1991): Using the Refinement Equation for the Construction of Pre-Wavelets, IV: Cube Splines and Elliptic Splines United. Report RC 17195, IBM.
[21] [MRU]C. A. Micchelli, C. Rabut, F. Utreras (preprint):Using the refinement equation for the construction of pre-wavelets, III: elliptic splines.
[22] [RS]S. D. Riemenschneider, Z. Shen (1991):Box splines, cardinal series, and wavelets. In: Approximation Theory and Functional Analysis (C. K. Chui, ed.). New York: Academic Press, pp. 133-149.
[23] [RS1]S. D. Riemenschneider, Z. Shen (1992):Wavelets and prewavelets in low dimensions. J. Approx. Theory,71:18-38. · Zbl 0772.41019 · doi:10.1016/0021-9045(92)90129-C
[24] [R1]A. Ron (1988):Exponential box splines. Constr. Approx.,4:357-378. · Zbl 0674.41005 · doi:10.1007/BF02075467
[25] [R2]A. Ron (1990):Factorization theorems of univariate splines on regular grids. Israel J. Math.,70:48-68. · Zbl 0731.41015 · doi:10.1007/BF02807218
[26] [Ru]W. Rudin (1974): Rela, and Complex Analysis. New York: McGraw-Hill.
[27] [Sö]J. Stöckler (1992):Multivariate wavelets. In: Wavelets?A Tutorial in Theory and Applications (C. K. Chui ed.). New York: Academic Press, pp. 325-355. · Zbl 0767.65003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.