zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk. (English) Zbl 0773.47014
The integrable functions on the unit disk $f$ for which the Hankel operator $H\sb f(g)=fg-P(fg)$ may be extended to a bounded operator from the Bergman space $A\sp p$ to $L\sp p$ are characterized, for $1<p<\infty$. Also characterized are those functions $f$ for which $H\sb f$ extends to a compact or Schatten class operator on $A\sp 2$.

47B35Toeplitz operators, Hankel operators, Wiener-Hopf operators
46J15Banach algebras of differentiable or analytic functions, $H^p$-spaces
47B38Operators on function spaces (general)
47B10Operators belonging to operator ideals
47B07Operators defined by compactness properties
Full Text: DOI
[1] Amar, E.: Suites d’interpolation pour LES classes de Bergman de la boule et du polydisque de cn. Canad. J. Math. 30, 711-737 (1978) · Zbl 0385.32014
[2] Apostel, C.; Foias, C.; Voiculescu, D.: Some results on non-quasitriangular operators, IV. Rev. roumaine math. Pures appl. 18, 487-513 (1973)
[3] Arazy, J.; Fisher, S.; Peetre, J.: Hankel operators on weighted Bergman spaces. Amer. J. Math. 110, 989-1054 (1988) · Zbl 0669.47017
[4] Axler, S.: The Bergman space, the Bloch space and commutators of multiplication operators. Duke math. J. 53, 315-332 (1986) · Zbl 0633.47014
[5] Axler, S.; Gorkin, P.: Algebras on the disk and doubly commuting multiplication operators. Trans. amer. Math. soc. 309, 711-723 (1988) · Zbl 0706.46040
[6] Békollé, D.; Berger, C. A.; Coburn, L. A.; Zhu, K. H.: BMO in the Bergman metric on bounded symmetric domains. J. funct. Anal. 93, 310-350 (1990) · Zbl 0765.32005
[7] Coifman, R.; Rochberg, R.: Representation theorems for holomorphic and harmonic functions. Astérisque 77, 11-65 (1980) · Zbl 0472.46040
[8] Gohberg, I. C.; Kreĭn, M. G.: Translation transl. Math. monographs. Transl. math. Monographs 18 (1969)
[9] Hastings, W. W.: A Carleson measure theorem for Bergman spaces. Proc. amer. Math. soc. 52, 237-241 (1975) · Zbl 0296.31009
[10] Havin, V. P.: A translation of dokl. Akad. nauk SSSR. Dokl. akad. Nauk SSSR 178, 1025-1028 (1968)
[11] S. Janson, Hankel operators between weighted Bergman spaces, Arch. Math., in press. · Zbl 0676.47013
[12] Janson, S.; Peetre, J.; Rochberg, R.: Hankel forms on the Fock space. Rev. mat. Iberoamericana 3, 61-138 (1987) · Zbl 0704.47022
[13] Luecking, D. H.: A technique for characterizing Carleson measures on Bergman spaces. Proc. amer. Math. soc. 87, 656-660 (1983) · Zbl 0521.32005
[14] Luecking, D. H.: Forward and reverse Carleson inequalities for functions in the Bergman spaces and their derivatives. Amer. J. Math. 107, 85-111 (1985) · Zbl 0584.46042
[15] Luecking, D. H.: Trace ideal criteria for Toeplitz operators. J. funct. Anal. 73, 345-368 (1987) · Zbl 0618.47018
[16] Mcdonald, G.; Sundberg, C.: Toeplitz operators on the disk. Indiana univ. Math. J. 28, 595-611 (1979) · Zbl 0439.47022
[17] Oleinik, V. L.; Pavlov, B. S.: A translation of 2nd ed. Zap. nauchn. Sem. leningrad. Otdel. mat. Inst. Steklov. Zap. nauchn. Sem. leningrad. Otdel. mat. Inst. Steklov 22, 94-102 (1971)
[18] Stroethoff, K.: Compact Hankel operators on the Bergman space. Illinois J. Math. 34, 159-174 (1990) · Zbl 0687.47019
[19] K. Stroethoff, Compact Hankel operators on the Bergman spaces of the unit ball and the polydisk in Cn, preprint. · Zbl 0723.47018
[20] K. Stroethoff, Hankel and Toeplitz operators on the Fock space, preprint. · Zbl 0774.47012
[21] K. Stroethoff and Dechao Zheng, Toeplitz and Hankel operators on the Bergman space, preprint. · Zbl 0945.47019
[22] Zhang, Genkai: Hankel operators and Plancherel formula. Ph.d. thesis (1991) · Zbl 0771.47014
[23] Zheng, Dechao: Hankel and Toeplitz operators on the Bergman space. J. funct. Anal. 83, 98-120 (1989) · Zbl 0678.47026
[24] Zheng, Dechao: Schatten class Hankel operators on the Bergman space. Integral equations operator theory 13, 442-459 (1990) · Zbl 0729.47023
[25] Zhu, Kehe: Schatten class Hankel operators on the Bergman space of the unit ball. Amer. J. Math. 113, 147-167 (1991) · Zbl 0734.47017
[26] Zhu, Kehe: Operator theory in function spaces. (1990)
[27] Kehe Zhu, BMO and Hankel operators on Bergman spaces, Pacific J. Math., in press.