zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Local linear regression smoothers and their minimax efficiencies. (English) Zbl 0773.62029
Summary: We introduce a smooth version of local linear regression estimators and address their advantages. The MSE and MISE of the estimators are computed explicitly. It turns out that the local linear regression smoothers have nice sampling properties and high minimax efficiency --- they are not only efficient in rates but also nearly efficient in constant factors. In the nonparametric regression context, the asymptotic minimax lower bound is developed via the heuristic of the “hardest one-dimensional subproblem” of {\it D. L. Donoho} and {\it R. C. Liu} [ibid. 19, No. 2, 668-701 (1991; Zbl 0754.62029)]. Connections of the minimax risk with the modulus of continuity are made. The lower bound is also applicable for estimating conditional mean (regression) and conditional quantiles for both fixed and random design regression problems.

62G07Density estimation
62G20Nonparametric asymptotic efficiency
62G05Nonparametric estimation
Full Text: DOI