zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A two-level discretization method for the Navier-Stokes equations. (English) Zbl 0773.76042
Summary: We propose and analyze a two level method of discretizing the nonlinear Navier-Stokes equations. This method has optimal accuracy and requires neither iteration nor the solution of more than a very small number of nonlinear equations.

76M10Finite element methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
Full Text: DOI
[1] Arnold, D. N.; Brezzi, F.; Fortin, F.: A stable finite element for the Stokes equations. Calcolo 21, 337-344 (1984) · Zbl 0593.76039
[2] Axelsson, O.: On global convergence of iterative methods. Iterative solution of nonlinear systems of eqns. 953 (1980)
[3] Axelsson, O.; Layton, W.: Defect correction methods for convection-dominated, convection diffusion equations. RAIRO J. Numer. anal. 24, 423-455 (1990) · Zbl 0705.65081
[4] Axelsson, O.; Layton, W.: Iterative methods as discretization procedures. Preconditioned conjugate gradient methods 1457 (1991)
[5] Axelsson, O.; Layton, W.: A two-level method for the discretization of nonlinear boundary value problems. (1992) · Zbl 0866.65077
[6] Böhmer, K.; Hemker, P.; Stetter, H. J.: The defect correction approach. Defect correction methods: theory and applications, 1-32 (1984) · Zbl 0551.65034
[7] Boland, J.; Layton, W.: Error analysis for finite element methods for steady natural convection problems. Numer. funct. Anal. and opt. 11, 449-483 (1990) · Zbl 0714.76090
[8] Crouzeix, M.; Raviart, P. A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO anal. Numer. 7, 33-76 (1973) · Zbl 0302.65087
[9] Dembo, R. S.; Eisenstat, S. C.; Steihaug, T.: Inexact Newton methods. SIAM j.n.a. 19, 400-408 (1982) · Zbl 0478.65030
[10] Eisenstat, S. C.; Walker, H. F.: Globally convergent inexact Newton methods. (1991) · Zbl 0814.65049
[11] Ervin, V.; Layton, W.: High resolution, minimal storage algorithms for convection dominated, convection-diffusion equations. Trans. fourth army conf. On apl. Math. and computing, 1173-1201 (1987) · Zbl 0625.76095
[12] Ervin, V.; Layton, W.: A study of defect correction finite difference methods for convection-diffusion equations. SIAM j.n.a. 26, 169-179 (1989) · Zbl 0672.65063
[13] Girault, V.; Raviart, P. A.: Finite element approximation of the Navier-Stokes equations. 749 (1979) · Zbl 0413.65081
[14] Girault, V.; Raviart, P. A.: Finite element methods for Navier-Stokes equations: theory and algorithms. (1986) · Zbl 0585.65077
[15] Gunzburger, M.: Finite element methods for viscous incompressible flow: A guide to theory, practice and algorithms. (1989)
[16] Hackbusch, W.: Multigrid methods and applications. (1985) · Zbl 0595.65106
[17] Layton, W.; Rabier, P.: An element-by-element parallel, low-order element for the Stokes problem. (1992)
[18] Liu, J. L.; Rheinboldt, W. C.: A posteriori error estimates for parameterized nonlinear equations. Nonlinear computational mechanics, 31-46 (1991)
[19] Rannacher, R.: Defect correction techniques in the finite element method. (1990) · Zbl 0784.65081
[20] Rannacher, R.: On the convergence of the Newton-raphson method for strongly nonlinear finite element equations. (1991)
[21] Roos, H. -G.: Higher order, uniformly convergent methods for singularly perturbed boundary value problems. (1992)
[22] Temam, R.: Navier-Stokes equations and nonlinear functional analysis. 41 (1983) · Zbl 0522.35002
[23] J. Xu, Technical Report in preparation, (1992).