Etingof, Pavel; Frenkel, Edward; Kazhdan, David Hecke operators and analytic Langlands correspondence for curves over local fields. (English) Zbl 1539.11146 Duke Math. J. 172, No. 11, 2015-2071 (2023). The paper under review is the third in a series of works [P. Etingof et al., Proc. Symp. Pure Math. 103, 137–202 (2021; Zbl 1475.14021); Geom. Funct. Anal. 32, No. 4, 725–831 (2022; Zbl 1495.14021)] by the authors on the foundations of an analytic Langlands correspondence for curves over (primarily Archimedean) local fields. This paradigm builds on earlier ideas of [A. Braverman and D. Kazhdan, Nagoya Math. J. 184, 57–84 (2006; Zbl 1124.22006); M. Kontsevich, Prog. Math. 270, 213–247 (2009; Zbl 1279.11065); R. P. Langlands, “On the analytic form of the geometric theory of automorphic forms”, Preprint, http://publications.ias.edu/rpl/section/2659; J. Teschner, “Quantisation conditions of the quantum Hitchin system and the real geometric Langlands correspondence”, Preprint, arXiv:1707.07873]. By analogy, the Langlands correspondence for a smooth projective curve \(X\) over \(\mathbb F_q\) relates the joint spectrum of Hecke operators acting on \(L^2\)-functions on the \(\mathbb F_q\)-points of the stack \(\mathrm{Bun}_G\) of \(G\)-bundles on \(X\), to Galois data associated to \(X\) and the Langlands dual group \(^LG\). The current paper studies the same problem, replacing \(\mathbb F_q\) with a local field \(F\). The authors define analogues for Hecke operators on a dense subspace of the Hilbert space of half-densities on \(\mathrm{Bun}_G\), where \(G\) is an \(F\)-split connected reductive group, and conjecture that they extend to the full space.In particular, let \(\mathrm{Bun}_G(X,S)\) be the moduli stack of pairs \((\mathscr F,r_S)\) where \(\mathscr F\) is a \(G\)-bundle on \(X\) and \(r_S\) a reduction to the Borel \(B\) of the restriction of \(\mathscr F\) to a reduced divisor \(S\) of \(X\) over \(F\). The authors introduce a open and dense substack of regularly stable pairs, or rather its corresponding coarse moduli space \(\mathrm{Bun}^\circ_G(X,S)\). The Hilbert space \(\mathscr H_G(X,S)\) is then defined as the completion of the space of smooth compactly supported sections of \(\Omega^{1/2}_\mathrm{Bun} = ||K^{1/2}_\mathrm{Bun}||\), a complex line bundle obtained from the square root of the canonical line bundle on \(\mathrm{Bun}^\circ(X,S)\). For a dominant integral coweight \(\lambda\) of \(G\), define a Hecke correspondence \[ q: Z(\lambda) \to \mathrm{Bun}_G(X,S) \times \mathrm{Bun}_G(X,S)\times (X\backslash S), \] where \(Z(\lambda)\) classifies certain tuples \((\mathscr F,\mathscr P, x,t)\) where \(\mathscr F,\mathscr P\) are principle \(G\)-bundles on \(X\), \(x\) a closed point in \(X\backslash S\), and \(t:\mathscr F|_{X\backslash x}\to \mathscr P|_{X\backslash x}\) an isomorphism. Further, denote by \(p_i\) the projection of the left hand side to the \(i\)-th factor, and \(q_i = p_i\circ q\). Let \(K_2\) be the canonical line bundle of \(q_2\times q_3\). Then the main Theorem 1.1 of the paper is that there exists a canonical isomorphism \[ q_1^*(K_\mathrm{Bun}^{1/2})\stackrel{\sim}{\to} q^*_2(K_\mathrm{Bun}^{1/2})\otimes K_2 \otimes q_3^*(K_X^{-\langle\lambda,\rho\rangle} \] where \(\rho\) is the half-sum of positive roots.For \(\mathscr P \in \mathrm{Bun}_G^\circ(X,S)(F)\) and \(x\in (X\backslash S)(F)\), let \(Z_{\mathscr P,x} = (q_2\times q_3)^{-1}(\mathscr P\times x)\). Then for certain compactly supported half densities \(f\) on \( \mathrm{Bun}_G^\circ(X,S)(F)\), define the Hecke operator \[ \hat H_\lambda(x): f(\mathscr P) = \int_{Z_{\mathscr P,x}} q_1^*(f) \in \mathscr H_G(X,S) \otimes (\Omega_X^{-\langle\lambda,\rho\rangle})_x, \] and varying \(x\in X\backslash S\), we obtain \(\hat H_\lambda\) as an operator-valued section of \(\Omega_X^{-\langle\lambda,\rho\rangle}\) over \(X\backslash S\). The authors conjecture several properties of this Hecke operator, including that they extend to a family of commuting compact normal operators on \(\mathscr H_G = \mathscr H_G(X,S)\), denoted by \(H_\lambda(x)\), and that there exists an orthogonal decomposition \[ \mathscr H_G = \widehat\bigoplus_{s}\mathscr H_G(s), \] where \(s\) runs over the the joint spectrum of the commutative algebra generated by \(H_\lambda(x)\) as \(\lambda\) and \(x\) vary, and \(\mathscr H_G(s)\) are finite-dimensional joint eigenspaces.In the case \(F=\mathbb C\), the authors furthermore conjecture that the joint spectrum is bijective with the set of \(^LG\)-opers on \(X\) with real monodromy. They also conjecture an explicit formula connecting the eigenvalues of Hecke operators with global differential operators, and prove it for \(G = \mathrm{GL}_n\) assuming a compactness conjecture. Reviewer: Tian An Wong (Dearborn) Cited in 2 Documents MSC: 11R39 Langlands-Weil conjectures, nonabelian class field theory Keywords:algebraic curve; differential operators; Hecke operators; Hilbert space; Langlands program; local field; normal operators; opers; principal \(G\)-bundle Citations:Zbl 1475.14021; Zbl 1495.14021; Zbl 1124.22006; Zbl 1279.11065 PDFBibTeX XMLCite \textit{P. Etingof} et al., Duke Math. J. 172, No. 11, 2015--2071 (2023; Zbl 1539.11146) Full Text: DOI arXiv Link References: [1] D. ARINKIN, D. GAITSGORY, D. KAZHDAN, S. RASKIN, N. ROZENBLYUM, and Y. VARSHAVSKY, The stack of local systems with restricted variation and geometric Langlands theory with nilpotent singular support, preprint, arXiv:2010.01906v2 [math.AG]. [2] A. BEILINSON and J. BERNSTEIN, “A proof of Jantzen conjectures” in I. M. Gelfand Seminar, Adv. Soviet Math. 16, Part 1, Amer. Math. Soc., Providence, 1993, 1-50. · Zbl 0790.22007 [3] A. BEILINSON and V. DRINFELD, Quantization of Hitchin’s integrable system and Hecke eigensheaves, preprint, 1991, http://www.math.uchicago.edu/ drinfeld/langlands/QuantizationHitchin.pdf. [4] A. BEILINSON and V. DRINFELD, Opers, preprint, arXiv:math/0501398v1 [math.AG]. [5] A. BRAVERMAN and D. KAZHDAN, Some examples of Hecke algebras for two-dimensional local fields, Nagoya Math. J. 184 (2006), 57-84. · Zbl 1124.22006 · doi:10.1017/S0027763000009314 [6] A. D’AGNOLO and P. SCHAPIRA, Radon-Penrose transform for \( \mathcal{D} -modules \), J. Funct. Anal. 139 (1996), no. 2, 349-382. · Zbl 0879.32012 · doi:10.1006/jfan.1996.0089 [7] V. G. DRINFELD and V. V. SOKOLOV, Equations of Korteweg-deVries type and simple Lie algebras (in Russian), Dokl. Akad. Nauk 258 (1981), no. 1, 11-16; English translation in Math. Dokl. 23 (1981), 457-462. · Zbl 0513.35073 [8] P. ETINGOF, E. FRENKEL, and D. KAZHDAN, “An analytic version of the Langlands correspondence for complex curves” in Integrability, Quantization, and Geometry, II: Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math. 103, Amer. Math. Soc., Providence, 2021, 137-202. · Zbl 1475.14021 [9] P. ETINGOF, E. FRENKEL, and D. KAZHDAN, Analytic Langlands correspondence for (( \operatorname{PGL}_2 on \mathbb{P}^1\)with parabolic structures over local fields, Geom. Funct. Anal. 32 (2022), no. 4, 725-831. · Zbl 1495.14021 · doi:10.1007/s00039-022-00603-w [10] J. FÆRGEMAN and S. RASKIN, Non-vanishing of geometric Whittaker coefficients for reductive groups, preprint, arXiv:2207.02955 [math.RT]. [11] G. FALTINGS, Real projective structures on Riemann surfaces, Compos. Math. 48 (1983), no. 2, 223-269. · Zbl 1514.53095 · doi:10.1007/s00229-022-01377-z [12] B. FEIGIN and E. FRENKEL, “Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras” in Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys. 16, World Sci. Publ., River Edge, 1992, 197-215. · Zbl 0925.17022 · doi:10.1142/s0217751x92003781 [13] E. FRENKEL, Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005), no. 2, 297-404. · Zbl 1129.17014 · doi:10.1016/j.aim.2004.08.002 [14] E. FRENKEL, Is there an analytic theory of automorphic functions for complex algebraic curves?, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), no. 042. · Zbl 1446.14005 · doi:10.3842/SIGMA.2020.042 [15] E. FRENKEL and D. BEN-ZVI, Vertex Algebras and Algebraic Curves, 2nd ed., Math. Surveys Monogr. 88, Amer. Math. Soc., Providence, 2004. · Zbl 1106.17035 · doi:10.1090/surv/088 [16] E. FRENKEL and C. TELEMAN, Geometric Langlands correspondence near opers, J. Ramanujan Math. Soc. 28A (2013), 123-147. · Zbl 1325.14023 [17] D. GAITSGORY, Outline of the proof of the geometric Langlands conjecture for \( \operatorname{GL}_2\), Astérisque 370 (2015), 1-112. · Zbl 1406.14008 [18] D. GALLO, M. KAPOVICH, and A. MARDEN, The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. (2) 151 (2000), no. 2, 625-704. · Zbl 0977.30028 · doi:10.2307/121044 [19] I. M. GELFAND and D. KAZHDAN, Certain questions of differential geometry and the computation of the cohomologies of the Lie algebras of vector fields (in Russian), Dokl. Akad. Nauk 200 (1971), 269-272; English translation in Math. Dokl. 12 (1971), 1367-1370. · Zbl 0238.58001 [20] W. M. GOLDMAN, Projective structures with Fuchsian holonomy, J. Differential Geom. 25 (1987), no. 3, 297-326. · Zbl 0595.57012 · doi:10.4310/jdg/1214440978 [21] A. B. GONCHAROV, Differential equations and integral geometry, Adv. Math. 131 (1997), no. 2, 279-343. · Zbl 0931.53038 · doi:10.1006/aima.1997.1669 [22] M. KASHIWARA, D-Modules and Microlocal Calculus, Trans. Math. Monogr. 217, Amer. Math. Soc., Providence, 2003. · Zbl 1017.32012 · doi:10.1090/mmono/217 [23] M. KONTSEVICH, “Notes on motives in finite characteristic” in Algebra, Arithmetic, and Geometry, in Honor of Y. I. Manin, Vol. II, Progr. Math. 270, Birkhäuser Boston, Boston, 2010, 213-247. · Zbl 1279.11065 · doi:10.1007/978-0-8176-4747-6_7 [24] R. P. LANGLANDS, On the analytic form of the geometric theory of automorphic forms, preprint, http://publications.ias.edu/rpl/section/2659 (accessed 7 April 2023). [25] Y. LASZLO and C. SORGER, The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. Éc. Norm. Supér. (4) 30 (1997), no. 4, 499-525. · Zbl 0918.14004 · doi:10.1016/S0012-9593(97)89929-6 [26] G. LAUMON, Transformation de Fourier généralisée, preprint, arXiv:alg-geom/9603004v1. [27] M. S. NARASIMHAN and S. RAMANAN, “Geometry of Hecke cycles, I” in C. P. Ramanujam: A Tribute, Tata Inst. Fund. Res. Stud. Math. 8, Springer, Berlin, 1978, 291-345. · Zbl 0427.14002 [28] M. ROTHSTEIN, Connections on the total Picard sheaf and the KP hierarchy, Acta Appl. Math. 42 (1996), no. 3, 297-308. · Zbl 0848.58032 · doi:10.1007/BF01064170 [29] J. TESCHNER, Quantisation conditions of the quantum Hitchin system and the real geometric Langlands correspondence, preprint, arXiv:1707.07873v2 [math-ph]. · Zbl 1439.14051 [30] A. WEIL, “Adèles et groupes algébriques” in Séminaire Bourbaki, Vol. 5, no. 186, Soc. Math. France, Paris, 1959, 249-257. · Zbl 0118.15801 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.