×

Fractional Edgeworth expansions for one-dimensional heavy-tailed random variables and applications. (English) Zbl 07733577

The authors study a class of lattice random variables in the domain of attraction of an \(\alpha\)-stable random variable with index \(\alpha \in (0,2)\) which satisfy a truncated fractional Edgeworth expansion.
The behaviour of the class under simple operations is considered, with specific examples. Also, sharp rates of convergence to an \(\alpha\)-stable distribution in a local central limit theorem are examined as well as Green’s function expansions. The authors also explore fluctuations of a class of discrete stochastic PDE’s driven by the heavy-tailed random walks belonging to the class of fractional Edgeworth expansions.

MSC:

60J45 Probabilistic potential theory
60G50 Sums of independent random variables; random walks
60E10 Characteristic functions; other transforms
60G52 Stable stochastic processes
60E07 Infinitely divisible distributions; stable distributions
60F05 Central limit and other weak theorems

References:

[1] Gideon Amir, Omer Angel, and Gady Kozma, One-dimensional long-range diffusion limited aggregation ii: The transient case, Ann. Appl. Probab. 27 (2017), no. 3, 1886-1922. · Zbl 1375.60035
[2] Tom M. Apostol, Another Elementary Proof of Euler’s Formula for \( \mathit{\zeta}(2 n)\), American Mathematical Monthly (1973), no. 80, 425-431. · Zbl 0267.10050
[3] Hajer Bahouri, Jean-Yves Chemin, and Raphael Danchin, Fourier analysis and nonlinear partial differential equations, Springer, 2011. · Zbl 1227.35004
[4] R. Bass and D. Levin, Transition probabilities for symmetric jump processes, Transactions of the American Mathematical Society 354 (2002), 2933-2953. · Zbl 0993.60070
[5] Sujit K Basu, On a local limit theorem concerning variables in the domain of normal attraction of a stable law of index α, \(1 < \mathit{\alpha} < 2\), The Annals of Probability (1976), 486-489. · Zbl 0351.60023
[6] Sujit K Basu, Makoto Maejima, Nishith K Patra, et al., A non-uniform rate of convergence in a local limit theorem concerning variables in the domain of normal attraction of a stable law, Yokohama Mathematical Journal 27 (1979). · Zbl 0533.60022
[7] Q. Berger, Notes on random walks in the cauchy domain of attraction, Probability Theory and Related Fields 175 (2019), 1-44. · Zbl 1479.60086
[8] Quentin Berger, Strong renewal theorems and local large deviations for multivariate random walks and renewals, Electron. J. Probab. 24 (2019), 47 pp. · Zbl 1412.60063
[9] Harald Bergström, On distribution functions with a limiting stable distribution function, Arkiv för Matematik 2 (1953), no. 5, 463-474. · Zbl 0052.14003
[10] Francesco Caravenna and Ron Doney, Local large deviations and the strong renewal theorem, Electron. J. Probab. 24 (2019), 48 pp. · Zbl 1467.60068
[11] Peng Chen and Lihu Xu, Approximation to stable law by the lindeberg principle, Journal of Mathematical Analysis and Applications 480 (2019), no. 2, 123338. · Zbl 1479.60046
[12] Leandro Chiarini, Milton Jara, and Wioletta M. Ruszel, Constructing fractional Gaussian fields from long-range divisible sandpiles on the torus, Stochastic Processes and their Applications 140 (2021), 147-182. · Zbl 1475.60080
[13] G Christoph, Asymptotic expansions in limit theorems for lattice distributions attracted to stable laws, Mathematische Nachrichten 116 (1984), no. 1, 53-59. · Zbl 0558.60025
[14] Gerd Christoph and Werner Wolf, Convergence theorems with a stable limit law, Mathematical research (1992). · Zbl 0773.60012
[15] Alessandra Cipriani, Rajat Subhra Hazra, and Wioletta M Ruszel, Scaling limit of the odometer in divisible sandpiles, Probability theory and related fields 172 (2018), no. 3, 829-868. · Zbl 1403.31001
[16] Giuseppe Da Prato and Arnaud Debussche, Strong solutions to the stochastic quantization equations, The Annals of Probability 31 (2003), no. 4, 1900-1916. · Zbl 1071.81070
[17] A. DasGupta, Edgeworth expansions and cumulants. in: Asymptotic theory of statistics and probability, Springer Texts in Statistics, 2008. · Zbl 1154.62001
[18] Kirkire Prashant Dattatraya, A non-uniform rate of convergence in the local limit theorem for independent random variables, Sankhyā: The Indian Journal of Statistics, Series A 56 (1994), no. 3, 399-415. · Zbl 0861.60031
[19] Susana Frómeta and Milton Jara, Scaling limit for a long-range divisible sandpile, SIAM Journal on Mathematical Analysis 50 (2018), no. 3, 2317-2361. · Zbl 1430.60082
[20] B.V. Gnedenko and A.N. Kolmogorov, Limit distributions for sums of independent random variables, Mathematica Scandinavica (1955), no. 3, 185-188.
[21] Loukas Grafakos, Classical fourier analysis, Springer, 2008. · Zbl 1220.42001
[22] Trishen Gunaratnam and Romain Panis, Emergence of fractional Gaussian free field correlations in subcritical long-range ising models, arXiv preprint 2306.11887 (2023).
[23] Martin Hairer, Introduction to regularity structures, Braz. J. Probab. Stat. 29 (2015), no. 2, 175-210. · Zbl 1316.81061
[24] Netanel Hazut, Shlomi Medalion, David A Kessler, and Eli Barkai, Fractional edgeworth expansion: corrections to the Gaussian-Lévy central-limit theorem, Physical Review E 91 (2015), no. 5, 052124.
[25] I.A. Ibragimov and J.V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff, 1971. · Zbl 0219.60027
[26] Yael Karshon, Shlomo Sternberg, and Jonathan Weitsman, The euler-maclaurin formula for simple integral polytopes, Proceedings of the National Academy of Sciences 100 (2003), no. 2, 426-433. · Zbl 1064.11063
[27] Harry Kesten, On a theorem of spitzer and stone and random walks with absorbing barriers, Illinois Journal of Mathematics 5 (1961), no. 2, 246-266. · Zbl 0114.07805
[28] Gregory F. Lawler and Vlada. Limic, Random Walk: A Modern Introduction, Cambridge University Press, 2010. · Zbl 1210.60002
[29] Dong Li, On kato-ponce and fractional leibniz, Revista matemática iberoamericana 35 (2019), no. 1, 23-100. · Zbl 1412.35261
[30] J.W. Lindeberg, Eine neue herleitung des exponentialgesetzes in der wahrscheinlichkeitsrechnung, Mathematische Zeitschrift 15 (1922), no. 1, 211-225. · JFM 48.0602.04
[31] Asad Lodhia, Scott Sheffield, Xin Sun, and Samuel S. Watson, Fractional Gaussian fields: A survey, Probability Surveys 13 (2016), no. 0, 1-56. · Zbl 1334.60055
[32] J. Mineka, A stable local limit theorem, Annals of Probability (1974), no. 2, 167-172. · Zbl 0295.60036
[33] Péter Nándori, Recurrence properties of a special type of heavy-tailed random walk, Journal of Statistical Physics 142 (2011), no. 2, 342-355. · Zbl 1223.60021
[34] Feng Qi, Bounds for the Ratio of Two Gamma Functions, Journal of Inequalities and Applications (2010), no. 2010, 1-84. · Zbl 1194.33005
[35] E. Rvaceva, On domains of attraction of multi-dimensional distributions, Transl. Math. Statist. and Probability (1961), no. 2, 183-205. · Zbl 0208.44401
[36] G. Samoradnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman and Hall/CRC, 1994. · Zbl 0925.60027
[37] Charles Stone, A local limit theorem for nonlattice multi-dimensional distribution functions, Ann. Math. Statist. 36 (1965), no. 2, 546-551. · Zbl 0135.19204
[38] H. Widom, Stable processes and integral equations, Trans. Amer. Math. Soc. 98 (1961), 430-449. · Zbl 0097.12905
[39] J.A. Williamson, Random walks and riesz kernels, Pacific Journal of Mathematics 25 (1968), 2 · Zbl 0239.60066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.