×

Error analysis of nonconforming virtual element method for Stokes problem with low regularity. (English) Zbl 1528.65118

Summary: In this paper, the nonconforming virtual element method is used to solve the Stokes problem where the velocity and pressure are allowed to have the low regularity. With the help of an enriching operator, the consistency error is estimated under the low regularity condition. Then the optimal error estimates are obtained for the velocity and pressure approximations, which implies that the nonconforming virtual element method has the good convergence even for the Stokes problem with the low regularity.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
76M10 Finite element methods applied to problems in fluid mechanics
35Q35 PDEs in connection with fluid mechanics

References:

[1] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013), no. 3, 376-391. · Zbl 1347.65172
[2] T. Apel, S. Nicaise and J. Schöberl, A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges, IMA J. Numer. Anal. 21 (2001), no. 4, 843-856. · Zbl 0998.65116
[3] B. Ayuso de Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 3, 879-904. · Zbl 1343.65140
[4] R. Becker and S. Mao, Quasi-optimality of adaptive nonconforming finite element methods for the Stokes equations, SIAM J. Numer. Anal. 49 (2011), no. 3, 970-991. · Zbl 1229.65205
[5] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. 23 (2013), no. 1, 199-214. · Zbl 1416.65433
[6] L. Beirão da Veiga, F. Brezzi, L. D. Marini and A. Russo, \(H\)(div) and \(H\)(curl)-conforming virtual element methods, Numer. Math. 133 (2016), no. 2, 303-332. · Zbl 1343.65133
[7] P. B. Bochev, C. R. Dohrmann and M. D. Gunzburger, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal. 44 (2006), no. 1, 82-101. · Zbl 1145.76015
[8] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics 44, Springer, Heidelberg, 2013. · Zbl 1277.65092
[9] S. C. Brenner, Convergence of nonconforming multigrid methods without full elliptic regularity, Math. Comp. 68 (1999), no. 225, 25-53. · Zbl 0912.65099
[10] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition, Texts in Applied Mathematics 15, Springer, New York, 2008. · Zbl 1135.65042
[11] F. Brezzi, R. S. Falk and L. D. Marini, Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 4, 1227-1240. · Zbl 1299.76130
[12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[13] A. Cangiani, V. Gyrya and G. Manzini, The nonconforming virtual element method for the Stokes equations, SIAM J. Numer. Anal. 54 (2016), no. 6, 3411-3435. · Zbl 1426.76230
[14] A. Cangiani, G. Manzini and O. J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems, IMA J. Numer. Anal. 37 (2017), no. 3, 1317-1354. · Zbl 1433.65282
[15] S. Chen, L. Dong and Z. Qiao, Uniformly convergent \(H\)(div)-conforming rectangular elements for Darcy-Stokes problem, Sci. China Math. 56 (2013), no. 12, 2723-2736. · Zbl 1305.76054
[16] X. Chen, A polygonal finite element method for Stokes equations, J. Adv. Math. Comput. Sci. 36 (2021), no. 4, 62-78.
[17] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. · Zbl 0999.65129
[18] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33-75. · Zbl 0302.65087
[19] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften 224, Springer-Verlag, Berlin, 1977. · Zbl 0361.35003
[20] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp. 79 (2010), no. 272, 2169-2189. · Zbl 1201.65198
[21] J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements in three dimensions, IMA J. Numer. Anal. 34 (2014), no. 4, 1489-1508. · Zbl 1305.76056
[22] Y. He and K. Li, Two-level stabilized finite element methods for the steady Navier-Stokes problem, Computing 74 (2005), no. 4, 337-351. · Zbl 1099.65111
[23] J. Huang and Y. Yu, A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations, J. Comput. Appl. Math. 386 (2021), Paper No. 113229, 20 pp. · Zbl 1457.65197
[24] M. Li, S. Mao and S. Zhang, New error estimates of nonconforming mixed finite element methods for the Stokes problem, Math. Methods Appl. Sci. 37 (2014), no. 7, 937-951. · Zbl 1314.65143
[25] Y. Liu and C. Yang, VPVnet: A velocity-pressure-vorticity neural network method for the Stokes’ equations under reduced regularity, Commun. Comput. Phys. 31 (2022), no. 3, 739-770. · Zbl 1492.76040
[26] G. Manzini, A. Russo and N. Sukumar, New perspectives on polygonal and polyhedral finite element methods, Math. Models Methods Appl. Sci. 24 (2014), no. 8, 1665-1699. · Zbl 1291.65322
[27] S. Mao and Z. Shi, On the error bounds of nonconforming finite elements, Sci. China Math. 53 (2010), no. 11, 2917-2926. · Zbl 1211.65148
[28] D. Y. Shi and S. P. Mao, Analysis of an anisotropic nonconforming mixed finite element method for 3D Stokes problems, Acta Math. Appl. Sin. 29 (2006), no. 3, 502-517.
[29] D. Shi and J. Wu, A low order nonconforming arbitrary quadrilateral element for solving Stokes equations, Chin. J. Eng. Math. 24 (2007), no. 6, 1129-1132. · Zbl 1150.65432
[30] B. Zhang, J. Zhao, Y. Yang and S. Chen, The nonconforming virtual element method for elasticity problems, J. Comput. Phys. 378 (2019), 394-410. · Zbl 1416.74092
[31] J. Zhao, B. Zhang, S. Mao and S. Chen, The divergence-free nonconforming virtual element for the Stokes problem, SIAM J. Numer. Anal. 57 (2019), no. 6, 2730-2759. · Zbl 1427.65388
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.