Koubek, V.; Sichler, J. On Priestley duals of products. (English) Zbl 0774.06006 Cah. Topologie Géom. Différ. Catég. 32, No. 3, 243-256 (1991). The authors investigate in this well-written paper the Priestley dual \(P(K)\) of a Cartesian product \(K\) of bounded, distributive lattices \(K_ i\). The space \(P(K)\) always contains the topological sum \(Q\) of the spaces \(P(K_ i)\) and, in the Boolean case, \(P(K)\) is the Stone-Čech compactification of \(Q\). In the general case, \(P(K)\) is some Priestley compactification of \(Q\), i.e., \(Q\) is a dense subspace of \(P(K)\) which induces the order on \(Q\). The authors investigate such compactifications in general and present interesting results for direct products, ultraproducts and double \(p\)-algebras. Reviewer: K.Kaiser (Houston) Cited in 7 Documents MSC: 06D05 Structure and representation theory of distributive lattices 18B30 Categories of topological spaces and continuous mappings (MSC2010) 06E15 Stone spaces (Boolean spaces) and related structures 06D15 Pseudocomplemented lattices 06D20 Heyting algebras (lattice-theoretic aspects) 54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.) Keywords:Cartesian products; bounded, distributive lattices; topological sum; Stone-Čech compactification; Priestley compactification; direct products; ultraproducts; double \(p\)-algebras PDFBibTeX XMLCite \textit{V. Koubek} and \textit{J. Sichler}, Cah. Topologie Géom. Différ. Catégoriques 32, No. 3, 243--256 (1991; Zbl 0774.06006) Full Text: Numdam EuDML References: [1] 1 M.E. Adams and R. Beazer , Congruence propertiea of distributive double p-algebras , to appear in Czechoslovak Math. J. Article | MR 1105437 | Zbl 0758.06008 · Zbl 0758.06008 [2] 2 M.E. Adams and R. Beazer , Distributive lattices having n-permutable congruences , to appear in Proc. Amer. Math. Soc. MR 1057741 | Zbl 0739.06006 · Zbl 0739.06006 · doi:10.2307/2048437 [3] 3 R. Beazer , Distributive p-algebras and double p-algebras having n-permutable congruencea , to appear in Proc. Edinburgh Math. Soc. MR 1169248 | Zbl 0741.06008 · Zbl 0741.06008 · doi:10.1017/S0013091500005563 [4] 4 B.A. Davey , Subdirectly irreducible distributive double p-algebras , Algebra Universalis 8 ( 1978 ), 73 - 88 . MR 450160 | Zbl 0381.06019 · Zbl 0381.06019 · doi:10.1007/BF02485372 [5] 5 B.A. Davey and D. Duffus , Exponentiation and duality , in ” Ordered Sets ,” D. Reidel, Dordrecht , 1982 , pp. 43 - 96 . MR 661291 | Zbl 0509.06001 · Zbl 0509.06001 [6] 6 G. Gratzer , ” Lattice Theory: First Concepts and Distributive Lattices ,” Freeman , San Francisco, California , 1971 . MR 321817 | Zbl 0232.06001 · Zbl 0232.06001 [7] 7 J. Hashimoto , Ideal theory of lattices , Math. Japon. 2 ( 1952 ), 149 - 186 . MR 57224 | Zbl 0048.25903 · Zbl 0048.25903 [8] 8 V. Koubek and J. Sichler , Amalgamation in varieties of distributive double p-algebraa , preprint. MR 1300481 · Zbl 0821.06008 [9] 9 H.A. Priestley , Representation of distributive lattices by means of ordered Stone spaces , Bull. London Math. Soc. 2 ( 1970 ), 186 - 190 . MR 265242 | Zbl 0201.01802 · Zbl 0201.01802 · doi:10.1112/blms/2.2.186 [10] 10 H.A. Priestley , Ordered topological spaces and the representation of distributive lattices , Proc. London Math. Soc. 24 ( 1972 ), 507 - 530 . MR 300949 | Zbl 0323.06011 · Zbl 0323.06011 · doi:10.1112/plms/s3-24.3.507 [11] 11 H.A. Priestley , Ordered sets and duality for distributive lattices , Ann. Discrete Math. 23 ( 1984 ), 36 - 90 . MR 779844 | Zbl 0557.06007 · Zbl 0557.06007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.