Silverman, H. Starlike and convexity properties for hypergeometric functions. (English) Zbl 0774.30015 J. Math. Anal. Appl. 172, No. 2, 574-581 (1993). Let \(F(a,b;c;z)\) denote the classical hypergeometric function. The author derives conditions for \(zF(a,b;c;z)\) to belong to various subclasses of the class of holomorphic functions univalent in the unit disk. As a further reference on these problems the reader may compare: S. S. Miller and P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric functions, [Proc. Am. Math. Soc. 110, No. 2, 333-342 (1990; Zbl 0707.30012)]. Reviewer: K.J.Wirths (Braunschweig) Cited in 50 Documents MSC: 30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) 33C20 Generalized hypergeometric series, \({}_pF_q\) 33C05 Classical hypergeometric functions, \({}_2F_1\) Citations:Zbl 0707.30012 PDF BibTeX XML Cite \textit{H. Silverman}, J. Math. Anal. Appl. 172, No. 2, 574--581 (1993; Zbl 0774.30015) Full Text: DOI OpenURL