×

zbMATH — the first resource for mathematics

The distribution function of the convolution square of a convex symmetric body in \({\mathbb{R}{}}^ n\). (English) Zbl 0774.52004
Let \(C\) be a centrally symmetric convex body in \(\mathbb{R}^ n\) with volume 1 and put \[ \begin{aligned} C(\delta): & = \{x\in\mathbb{R}^ n:\text{Vol} C\cap(C+x)\geq\delta\}\quad\text{ and } \\ V_ C(\delta): & = \text{ Vol } \{x\in\mathbb{R}^ n:\text{Vol} C\cap(C+x)>\delta\} \end{aligned} \] for \(0\leq\delta\leq 1\). The author relates these notions to some familiar objects in the affine geometry of convex bodies. Typical results are the limit relations \[ \lim_{\delta\to 1}(1-\delta)^{-1}C(\delta)=P^* \] in the Hausdorff metric, where \(P^*\) is the polar of the projection body of \(K\), and \[ \lim_{\delta\to 0}{V_ C(0)-V_ C(\delta)\over\delta^{2/(n+1)}}=a_ nS_{\text{aff}}(C), \] where \(a_ n\) is an explicit constant and \(S_{\text{aff}}\) denotes the (generalized) affine surface area. Finally, the exact asymptotic behaviour of \(V_ C(0)-V_ C(\delta)\) for \(\delta\to 0\) is determined if \(C\) is a symmetric polytope. This is in analogy to work of C. Schütt [Isr. J. Math. 73, No. 1, 65-77 (1991; Zbl 0745.52006)], who used the convex floating body.

MSC:
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. Bangert,Analytische Eigenschaften konvexer Funktionen auf Riemannschem Mannigfaltigkeiten, J. Reine Angew. Math.307 (1979), 309–324. · Zbl 0396.52007
[2] I. Barany and D. G. Larman,Convex bodies, economic cap coverings, random polytopes, Mathematika35 (1988), 274–291. · Zbl 0674.52003
[3] M. Gromov and V. D. Milman,Brunn theorem and a concentration of volume phenomenon for convex bodies, GAFA 1983–1984 · Zbl 0953.52500
[4] K. Keiner,Extremailtät von Ellipsoiden und die Faltungsungleichung von Sobolev, Arch. Math46 (1986), 162–168. · Zbl 0563.52009
[5] K. Leichtweiß,Zur Affinoberfläche konvexer Körper, Manuscripta Mathematica56 (1986), 429–464. · Zbl 0597.52003
[6] E. Lutwak,Extended affine surface area, preprint · Zbl 0727.53016
[7] A. M. Macbeath,A theorem on non-homogeneous lattices, Annals of Math.56 (1952), 269–293. · Zbl 0047.04903
[8] V. D. Milman and A. Pajor,Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, GAFA 87–88, Springer LNM 1376, 64–104 · Zbl 0679.46012
[9] M. Meyer and S. Reisner,A geometric property of the boundary of symmetric convex bodies and convexity of floatation surfaces, Geom. Ded.37 (1991), 327–337. · Zbl 0731.52002
[10] R. Schneider,Boundary structure and curvature of convex bodies, Proc. Geom. Symp. Siegen 1978, ed. by J. Tölke and J. Wills, 13–59
[11] C. Schütt and E. Werner,The convex floating body, Math. Scand.66 (1990), 275–290. · Zbl 0739.52008
[12] C. Schütt,The convex floating body and polyhedral approximation, Israel J. Math.73 (1991), 65–77 · Zbl 0745.52006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.