zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Embedding problem of fuzzy number space. III. (English) Zbl 0774.54003
[For Part II see Zbl 0771.46045.] The authors compare some topological structures for fuzzy numbers. As a tool they use an embedding theorem proved earlier [Fuzzy Sets Syst. 44, 33-38 (1991; Zbl 0757.46066)].

54A40Fuzzy topology
26E50Fuzzy real analysis
Full Text: DOI
[1] Badard, R.: Comparison of topological and uniform structures for fuzzy numbers and the fixed point problem. Fuzzy sets and systems 21, 211-220 (1981) · Zbl 0604.54009
[2] Bergstrom, H.: Weak convergence of measure. (1982)
[3] Dieudonne, J.: Elements d’analyse. 1 (1969)
[4] Goetschel, R.; Voxman, W.: Topological properties of fuzzy number. Fuzzy sets and systems 10, 87-99 (1983) · Zbl 0521.54001
[5] Goetschel, R.; Voxman, W.: Elementary fuzzy calculus. Fuzzy sets and systems 18, 31-43 (1986) · Zbl 0626.26014
[6] Kaleva, O.: The Cauchy problem for fuzzy differential equations. Fuzzy sets and systems 35, 389-396 (1990) · Zbl 0696.34005
[7] Negoita, C. V.; Ralescu, D. A.: Applications of fuzzy sets to systems analysis. (1975) · Zbl 0326.94002
[8] Nguyen, H. T.: A note on the extension principle for fuzzy sets. J. math. Anal. appl. 64, 369-380 (1978) · Zbl 0377.04004
[9] Puri, M. L.; Ralescu, D. A.: Differential for fuzzy functions. J. math. Anal. appl. 91, 552-558 (1983) · Zbl 0528.54009
[10] Radstrom, H.: An embedding theorem for spaces of convex sets. Proc. amer. Math. soc. 31, 165-169 (1952) · Zbl 0046.33304
[11] Congxin, Wu; Ming, Ma: Embedding problem of fuzzy number space: part I. Fuzzy sets and systems 44, 33-38 (1991) · Zbl 0757.46066
[12] Congxin, Wu; Ming, Ma: Embedding problem of fuzzy number space: part II. Fuzzy sets and systems 45, 189-202 (1992) · Zbl 0771.46045