×

On parameter-effects arrays in non-linear regression models. (English) Zbl 0774.62065

Summary: Formulas for new three- and four-dimensional parameter-effects arrays corresponding to transformations of parameters in nonlinear regression models are given. These formulae make the construction of the confidence regions for parameters easier. An example is presented which shows that some care is necessary when a new array is computed.

MSC:

62J02 General nonlinear regression
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Bates D. M., Watts D. G.: Relative curvature measure of nonlinearity. Journal of the Royal Statistical Society (1980), 1-25. · Zbl 0455.62028
[2] Bates D. M., Watts D. G.: Parameter transformations for improved approximate confidence regions in nonlinear least squares. The Annals of Statistics 9 (1981), 1152-1162. · Zbl 0493.62060
[3] Clarke G. P. I.: Marginal curvatures and their usefulness in the analysis of nonlinear regression models. Journal of the American Statistical Association 82 (1987), 844-850. · Zbl 0623.62062
[4] Cook R. D., Goldberg M. L.: Curvatures for parameter subsets in nonlinear regression. The Annals of Statistics 14 (1986), 1399-1418. · Zbl 0651.62060
[5] Cook R. D., Witmer J. A.: J. Amer. Statist. Assoc. 80 (1985), 872-878.
[6] Hoogaard P.: Parameter transformations in multiparameter nonlinear regression models. University of Copenhagen, Institute of Mathematical Statistics, 1984, Preprint No. 2.
[7] Potocký R., Van Ban T.: Confidence regions in non-linear regression models. Applications of Mathematics 57 (1992), 29-39. · Zbl 0749.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.