×

The Galois module structure of certain arithmetic principal homogeneous spaces. (English) Zbl 0776.11065

This paper describes a new connection between Galois module theory and values of \(p\)-adic \(L\)-functions. The author demonstrates such a connection both for unramified Kummer extensions of order \(p\) of the cyclotomic field \(\mathbb{Q}(\zeta_ p)\), and for principal homogeneous spaces arising from an elliptic curve with complex multiplication defined over an imaginary quadratic field \(K\).
For the cyclotomic case, let \(N=\mathbb{Q}(\zeta_ p)\), \(p\) an odd prime number, let \(G\) be cyclic of order \(p\), and let \({\mathfrak B}=\text{Map}(G,{\mathcal O}_ N)\). The group \(\text{PH}({\mathfrak B})\) of principal homogeneous spaces for \({\mathfrak B}\) is the same as the group of isomorphism classes of Galois extensions of \({\mathcal O}_ N\) with group \(G\). The map \(\psi: \text{PH}({\mathfrak B})\to\text{Cl}({\mathfrak A})\) defined by viewing a principal homogeneous space as a (locally free) module over \({\mathfrak A}={\mathcal O}_ N G\) is a \(\Delta\)-homomorphism with the natural action of \(\Delta=\text{Gal}(N/\mathbb{Q})\) on \(\text{PH}({\mathfrak B})\) and \(\text{Cl}({\mathfrak A})\). So \(\text{ker}(\psi)\) is a \(\mathbb{Z}_ p\Delta\)- module, hence decomposes into eigenspaces \(\text{ker}(\psi)_ i\) corresponding to the \(i\)-th power of the character \(\kappa: \Delta\to\mathbb{Z}^ \times_ p\) given by \(\zeta^ \delta=\xi^{\kappa(\delta)}\) for \(\delta\) in \(\Delta\). The author shows that \(\text{ker}(\psi)_ i=(0)\) if \(i=0\) or \(i\) is odd, while if \(i>0\) is even then \(\text{ker}(\psi)_ i=(0)\) iff \(L_ p(1,\kappa^ i)h_{F,i}^{-1}\not\equiv 0\pmod p\). Here \(L_ p(1,\kappa^ i)\) is the \(p\)-adic \(L\)-function associated to \(\kappa^ i\), and \(h_{F,i}\) is the cardinality of the \(i\)-part of the \(p\)-Sylow subgroup of the class group of \(F\).
In an explicitly analogous way, the author obtains a similar result for principal homogeneous spaces arising from an elliptic curve \(E\) defined over \(K\) as above with complex multiplication by \({\mathcal O}_ K\). Let \({\mathfrak p}\) be a prime ideal of \({\mathcal O}_ K\) not dividing the conductor \({\mathfrak f}\) of \(E\), let \(p{\mathcal O}_ K={\mathfrak p}{\mathfrak p}^*\), \({\mathfrak p}=\pi{\mathcal O}_ K\), \({\mathfrak p}^*=\pi^*{\mathcal O}_ K\), let \(E_ \pi\) denote the group of \(\pi\)-division points of \(E\), let \(F=K(E_ \pi)\), \(N=F(\zeta_ p)\), and analogously define \(E_{\pi^*}\), \(F_ *\), \(N_ *\). Let \(G\) be an isomorphic copy of \(E_{\pi^*}\). Let \(\Delta=\text{Gal}(N/F_ *)\), let \(\kappa\) be the \(\mathbb{Z}^ \times_ p\)-valued character which gives the action of \(\text{Gal}(N/K)\) on \(E_ \pi\). Let \({\mathfrak B}\) be the unique Hopf order in \(B=\text{Map}(G,N)\) with \(\text{Spec}({\mathfrak B})=E_{\pi^*}/{\mathcal O}_ N\), and let \({\mathfrak A}=\operatorname{Hom}_{{\mathcal O}_ N}({\mathfrak B},{\mathcal O}_ N)\). Again, the map \(\psi: \text{PH}({\mathfrak A})\to\text{Cl}({\mathfrak A})\) is a \(\Delta\)-module homomorphism, and \(\text{ker}(\psi)\) decomposes into eigenspaces under the action of \(\Delta\) via powers of the character \(\kappa\). Then for \(i\not\equiv 0\pmod{p-1}\), \(\text{ker}(\psi)_ i=(0)\) iff \(L_{{\mathfrak p},{\mathfrak f}}(\kappa^{-i})h_{F,i}^{-1}\not\equiv 0\pmod p\). Here \(h_{F,i}\) is a class number defined as before, and \(L_{{\mathfrak p},{\mathfrak f}}\) is the \({\mathfrak p}\)-adic \(L\)-function defined on the Größencharaktere of the Galois group over \(K\) of the union of all ray class fields of \(K\) whose conductor is \({\mathfrak f}\) times a power of \(p\).

MSC:

11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
11S40 Zeta functions and \(L\)-functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Brumer, A., On the units of algebraic number fields, Mathematika, 14, 121-124 (1967) · Zbl 0171.01105
[3] Childs, L., The group of unramified Kummer extensions of prime degree, (Proc. London Math Soc. (3), 35 (1977)), 407-422 · Zbl 0374.13002
[4] Coates, J.; Wiles, A., On the conjecture of Birch and Swinnerton-Dyer, Invent. Math., 39, 223-251 (1977) · Zbl 0359.14009
[5] de Shalit, E., Iwasawa Theory of Elliptic Curves with Complex Multiplication, (Perspectives in Mathematics, Vol. 3 (1987), Academic Press: Academic Press San Diego, CA) · Zbl 0674.12004
[6] Fröhlich, A., Galois Module Structure of Algebraic Integers, (Springer Ergebnisse, Band 1 (1983), Springer-Verlag: Springer-Verlag Berlin/New York), 3. Folge · Zbl 0501.12012
[7] Hurley, S., Galois objects with normal bases for free Hopf algebras of prime degree, J. Algebra, 109, 292-318 (1987) · Zbl 0622.16005
[9] Lang, S., Algebraic Number Theory (1970), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0211.38404
[10] Mazur, B.; Wiles, A., Classfields of abelian extensions of \(Q\), Invent. Math., 76, 179-330 (1984) · Zbl 0545.12005
[12] Srivastav, A.; Taylor, M. J., Elliptic curves with complex multiplication and Galois module structure, Invent. Math., 99, 165-184 (1990) · Zbl 0705.14031
[13] Sweedler, M., Hopf Algebras (1969), Benjamin: Benjamin New York · Zbl 0194.32901
[14] Taylor, M. J., Résolvantes et espaces homogènes principaux de schèmes en groupe, (Séminaire de la théorie des nombres de Bordeaux, 2 (1991)), 255-271 · Zbl 0731.14032
[15] Taylor, M. J., Mordell-Weil groups and the Galois module structure of rings of integers, Illinois J. Math., 32, No. 3, 428-452 (1988) · Zbl 0631.14033
[16] Taylor, M. J., On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math., 63, 41-79 (1981) · Zbl 0469.12003
[17] Taylor, M. J., Galois Module Theory and Hopf Structure (Notes by N. Byott), (Roggenkamp, K.; Taylor, M. J., Group Rings and Classgroups. Group Rings and Classgroups, DMV Seminar, Band 18 (1992), Birkhäuser Verlag: Birkhäuser Verlag Basel-Boston-Berlin)
[18] Waterhouse, W. C., Principal homogeneous spaces and group scheme extensions, Trans. Amer. Math. Soc., 153, 181-189 (1971) · Zbl 0208.48401
[19] Washington, L., Introduction to Cyclotomic Fields, (GTM 83 (1980), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.