Komatsu, Hiroaki; Tominaga, Hisao Some commutativity conditions for rings with unity. (English) Zbl 0776.16017 Result. Math. 19, No. 1-2, 83-88 (1991). Let \(R\) be a ring with 1. The following conditions are equivalent: 0) \(R\) is commutative. 1) There exists a non-negative integer \(m\) such that, given \(x,y\in R\), \(\{1-h(x^ m y)\}[x,x^ m y-f(yx^ m)]\cdot\{1- g(x^ my)\}=0\) for some \(f(X)\in X^ 2\mathbb{Z}[X]\) and \(g(X),h(X)\in XZ[X]\). 2) There exists a non-negative integer \(m\) such that, given \(x,y\in R\), \(\{1-h(x^ m y)\}[x,x^ m y-f(yx^ m)]\{1-g( x^ m y)\}=0\) and \(\{1-\widetilde{h}(y^ m x)[y,xy^ m-\widetilde{f}(y^ m x)]\{1- \widetilde {g}(y^ m x)\}=0\) for some \(f(X),\widetilde {f}(X)\in X^ 2 \mathbb{Z}[X]\) and \(g(X),\widetilde {g}(X),h(X),\widetilde h(X)\in X\mathbb{Z}[X]\). There exist non-negative integers \(\ell\), \(m\), \(n\) such that, given \(x,y\in R\), \([x,x^ m y-x^ n f(y)x^ \ell]=0\) for some \(f(X)\in X^ 2\mathbb{Z}[X]\). 4) For each \(x,y\in R\), there exist non-negative integers \(\ell\), \(m\), \(n\) and \(f(X),g(X),h(X)\in X^ 2\mathbb{Z}[X]\) such that \([x,x^ my-x^ nf(y)x^ \ell]=0\) and \([x-g(x),y-h(y)]=0\). 5) For \(x,y\in R\) there exist integers \(n>0\) and \(m>1\) such that \((n,m)=1\), \((xy)^ n=x^ n y^ n\), \((xy)^{n+1}=x^{n+1} y^{n+1}\) and \((1+[x,y])^ m=1+[x,y]^ m\). 6) For each \(x,y\in R\), there exist integers \(n>0\) and \(m>1\) such that \((n,m)=1\), \((yx)^{n-1}= x^{n-1} y^{n-1}\), \((yx)^ n=x^ n y^ n\) and \((1+[x,y])^ m=1+[x,y]^ m\). 7) For each \(x,y\in R\), there exist positive integers \(n\) and \(m\) such that \((n,m)=1\), \((xy)^ n=x^ n y^ n\), \((xy)^{n+1}=x^{n+1} y^{n+1}\), \((xy)^ m=x^ m y^ m\) and \((xy)^{m+1}=x^{m+1}y^{m+1}\). This generalizes several previously known results. Reviewer: R.N.Gupta (Chandigarh) Cited in 3 ReviewsCited in 3 Documents MSC: 16U70 Center, normalizer (invariant elements) (associative rings and algebras) 16U80 Generalizations of commutativity (associative rings and algebras) 16R40 Identities other than those of matrices over commutative rings Keywords:commutativity; nilpotent elements; group of units; commutator ideal PDF BibTeX XML Cite \textit{H. Komatsu} and \textit{H. Tominaga}, Result. Math. 19, No. 1--2, 83--88 (1991; Zbl 0776.16017) Full Text: DOI References: [1] H.E. Bell, M.A. Quadri and M. Ashraf: Commutativity of rings with some commutator constraints, Radovi Mat. 5 (1989), 223–230. · Zbl 0697.16031 [2] H.E. Bell, M.A. Quadri and M.A. Khan: Two commutativity theorems for rings, Radovi Mat. 3 (1987), 255–260. · Zbl 0648.16028 [3] B. Felzenszwalb: On the commutativity of certain rings, Acta Math. Acad. Sci. Hung. 34 (1979), 257–260. · Zbl 0438.16024 [4] I.N. Herstein: Two remarks on the commutativity of rings, Canad. J. Math. 7 (1955), 411–412. · Zbl 0065.02203 [5] H. Komatsu: A commutativity theorem for rings. II, Osaka J. Math. 22 (1985), 811–814. · Zbl 0575.16017 [6] H. Komatsu and H. Tominaga: Chacron’s condition and commutativity theorems, Math. J. Okayama Univ. 31 (1989), 101–120. · Zbl 0705.16023 [7] H. Komatsu and H. Tominaga: On non-commutative algebras and commutativity conditions, Resultate Math. 18 (1990), 74–92. · Zbl 0783.16018 [8] W. Streb: Zur Struktur nichtkommutativer Ringe, Math. J. Okayama Univ. 31 (1989), 135–140. · Zbl 0702.16022 [9] C.-T. Yen: On the commutativity of rings, Chinese J. Math. 16 (1988), 201–210. · Zbl 0673.16023 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.