Harmonic morphisms in nonlinear potential theory. (English) Zbl 0776.31007

For fixed \(1<p< \infty\), let \(A_ p\) denote the family of all mappings \(a:\mathbb{R}^ n \times \mathbb{R}^ n \to \mathbb{R}^ n\), \((x,h) \to a(x,h)\), satisfying appropriate conditions (such as being comparable to \(| h |^{p-1})\). A function \(u\) defined in an open set \(\Omega \subset \mathbb{R}^ n\) is said to be \(a\)-harmonic in \(\Omega\) if it is a continuous (generalized) solution in \(\Omega\) of the quasilinear elliptic equation \(-\text{div} a(x,\nabla u)=0\).
Definition: Let \(a^*\) and \(a\) belong to \(A_ p\). A continuous mapping \(f:\Omega \to \mathbb{R}^ n\) is an \((a^*,a)\)-harmonic morphism if \(u \circ f\) is \(a^*\)-harmonic in \(f^{-1}(\Omega)\) whenever \(u\) is \(a\)-harmonic in \(\Omega\). \(f\) is said to be an \(A_ p\)-harmonic morphism if \(f\) is an \((a^*,a)\)-harmonic morphism for some \(a^*\) and \(a\) in \(A_ p\).
Definition: A continuous mapping \(f:\Omega \to \mathbb{R}^ n\) is \(K\)-quasi- regular if it belongs to the Sobolev space \(W^{1,n}_{\text{loc}}(\Omega)\) and satisfies the inequality \(| f'(x)|^ n\leftrightharpoons KJ_ f(x)\) a.e. in \(\Omega\), where \(f'(x)\) is the formal derivative matrix and \(J_ f(x)\) is the Jacobian determinant.
This paper is an extensive study of \(A_ p\)-harmonic morphisms especially in the cae \(p=n\) where the authors prove that every sense- preserving \(A_ n\)-harmonic morphism is quasi-regular. Also, if \(1<p<n\) and \(f:\Omega \to \mathbb{R}^ n\) is a (suitably restricted) \(A_ p\)- harmonic morphism, then \(f\) is of bounded length distortion in every compact set of \(\Omega\). There is a section concerning asymptotic estimates of \(a\)-harmonic functions near an essential isolated singularity. There are quite a few references in the text to closely related work upon which the present proofs depend.


31C45 Other generalizations (nonlinear potential theory, etc.)
31C05 Harmonic, subharmonic, superharmonic functions on other spaces
Full Text: DOI


[1] DOI: 10.1307/mmj/1029001415 · Zbl 0296.31006
[2] Ann. Acad. Sci. Fenn. Ser. A I. Math 1 pp 151– (1987)
[3] DOI: 10.1090/S0002-9947-1962-0137103-6
[4] Acta Math III pp 247– (1964)
[5] Quasiregular mappings · Zbl 0431.30010
[6] Harmonic morphisms and non-linear potential theory
[7] DOI: 10.1512/iumj.1989.38.38013 · Zbl 0688.31005
[8] J. Math. Kyoto Univ 19 pp 215– (1979) · Zbl 0421.31006
[9] Ann. Acad. Sci. Fenn. Ser. A I. Math. Dissertationes 74 pp 1– (1990)
[10] Nonlinear Potential Theory of Degenerate Elliptic Equations · Zbl 0780.31001
[11] DOI: 10.1090/S0002-9947-1983-0690040-4
[12] Ann. Inst. Fourier, Grenoble 39.2 pp 293– (1989)
[13] Ann. Acad. Sci. Fenn. Ser. A I. Math 293 pp 1– (1960)
[14] DOI: 10.1090/S0002-9947-1988-0965751-8
[15] DOI: 10.1090/S0002-9947-1961-0132841-2
[16] Math. Scand 63 pp 136– (1988) · Zbl 0706.31015
[17] DOI: 10.1007/BF01351918 · Zbl 0401.31004
[18] DOI: 10.1007/BF02386110 · Zbl 0652.31006
[19] Ann. Inst. Fourier, Grenoble 28.2 pp 107– (1978)
[20] DOI: 10.5186/aasfm.1982.0717 · Zbl 0468.30015
[21] DOI: 10.5186/aasfm.1991.1609 · Zbl 0727.35022
[22] Mat. Sbornik 66 pp 471– (1965)
[23] Mat. Sbornik 65 pp 357– (1964)
[24] Nagoya Math. J 25 pp 1– (1965) · Zbl 0138.36701
[25] DOI: 10.1007/BF02797681 · Zbl 0451.30012
[26] Amer. Math. Soc, Trans 73 (1989)
[27] Continuous transformations in analysis (1955)
[28] Vestnik Leningrad Univ. Mat. Mekh. Astronom 25 pp 42– (1970)
[29] DOI: 10.1007/BF01460043 · Zbl 0632.35021
[30] Ann. Acad. Sci. Fenn. Ser. A I. Math 465 pp 1– (1970)
[31] Ann. Acad. Sci. Fenn. Ser. A I. Math 448 pp 1– (1969)
[32] DOI: 10.1007/BF02392541 · Zbl 0607.35042
[33] Quasiconformal mappings in the plane (1973)
[34] Ann. Acad. Sci. Fenn. Ser. A I. Math 392 pp 1– (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.