Zafer, A.; Dahiya, R. S. Oscillation of bounded solutions of neutral differential equations. (English) Zbl 0776.34058 Appl. Math. Lett. 6, No. 2, 43-46 (1993). This paper deals with the neutral differential equation of the form (1) \(\{a(t)(x(t)-p(t)x(t-\tau))^{(n-1)}\}'+\delta q(t)f(x(\sigma(t)))=0\), \(\delta=\pm 1\), where \(a,p,q\), \(\sigma\in C([t_ 0,\infty),R),a(t)>0,q(t)\geq 0(\not\equiv 0)\) on \([t_ 0,\infty)\), \(\lim_{t\to\infty}\sigma(t)=\infty\). The authors give sufficient conditions under which every bounded solution \(x(t)\) of (1) is: i) oscillatory when \((-1)^ n\delta=1\), ii) either oscillatory or \(\lim_{t\to\infty}x(t)=0\) when \((-1)^ n\delta=-1\). Reviewer: P.Marušiak (Žilina) Cited in 3 Documents MSC: 34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument) 34K40 Neutral functional-differential equations 34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations Keywords:nonoscillatory solution; neutral differential equation; oscillatory PDF BibTeX XML Cite \textit{A. Zafer} and \textit{R. S. Dahiya}, Appl. Math. Lett. 6, No. 2, 43--46 (1993; Zbl 0776.34058) Full Text: DOI References: [1] Grace, S. R.; Lalli, B. S., Oscillation of nonlinear second order neutral delay differential equations, Rad. Mat., 3, 77-84 (1987) · Zbl 0642.34059 [2] Graef, J. R.; Grammatikopoulos, M. K.; Spikes, P. W., Asymptotic properties of solutions of nonlinear neutral delay differential equations of the second order, Rad. Mat., 4, 133-149 (1988) · Zbl 0662.34070 [3] Grammatikopoulos, M. K.; Ladas, G.; Meimaridou, A., Oscillation of second order neutral differential equations, Rod. Mat., 2, 267-274 (1985) · Zbl 0581.34051 [4] Grove, E. A.; Ladas, G.; Schinas, J., Sufficient conditions for the oscillation of delay and neutral delay equations, Canad. Math. Bull., 31, 459-466 (1988) · Zbl 0666.34077 [5] Ladas, G.; Sficas, Y. G., Oscillation of higher-order neutral equations, J. Austral. Math. Soc., 27, 502-511 (1986) · Zbl 0566.34055 [6] Ladde, G. S.; Lakshmikantham, V.; Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments (1987), Marcel Dekker, Inc: Marcel Dekker, Inc New York · Zbl 0832.34071 [7] Kiguradze, I. T., On the oscillation of solutions of equation \(d^m\) u/\(dt^m}+a(t) u^m\) sgn \(u=0\), Mat.Sb., 65, 172-187 (1964) · Zbl 0135.14302 [8] Chuanxi, Q.; Ladas, G., Oscillation of neutral differential equations with variable coefficients, Applicable Anal., 32, 215-228 (1989) · Zbl 0682.34049 [9] Hale, J., Theory of Functional Differential Equations (1977), Springer-Verlag: Springer-Verlag New York This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.