×

zbMATH — the first resource for mathematics

On the sequential order. (English) Zbl 0776.54004
The sequential order of a sequential convergence space is the least ordinal \(\alpha\) for which the \(\alpha\)-th iteration of the sequential closure operator is idempotent. It is well-known that the sequential order of a sequential convergence space cannot exceed \(\omega_ 1\), the first uncountable ordinal. The authors show that each of the sets \(Q\), \(Q/Z\), and \(R\) can be equipped with a sequential convergence with unique limits and compatible with the usual group (ring) structure such that the sequential order, in each case, is \(\omega_ 1\).
Reviewer: D.C.Kent (Pullman)

MSC:
54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)
54H99 Connections of general topology with other structures, applications
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] ARHANGEĽSKIĬ A. V., FRANKLIN S. P.: New ordinal invariants for topological spaces. Michigan Math. J. 15 (1968), 313-320. · Zbl 0167.51102
[2] BEATTIE R., BUTZMANN H.-P.: Sequentially determined convergence spaces. Czechoslovak Math. J. 37 (1987), 231-247. · Zbl 0652.54001
[3] CONTESSA M., ZANOLIN F.: Example of a commutative convergence ring which has no completion. Boll. Un. Mat. Ital. A (5) 18 (1981), 467-472. · Zbl 0466.54001
[4] DIKRANJAN D.: Non-completeness measure of convergence Abelian groups. General Topology and its Relations to Modern Analysis and Algebra VI. (Proc. Sixth. Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 125-134.
[5] DIKRANJAN D., FRIČ R., ZANOLIN F.: On convergence groups with dense coarse subgroups. Czechoslovak Math. J. 37 (1987), 471-479. · Zbl 0637.22002
[6] FRIČ R.: Rational with exotic convergences. Math. Slovaca 39 (1989), 141-147. · Zbl 0678.54001
[7] FRIČ R., KENT D. C.: Completion of pseudo-topological groups. Math. Nachr. 99 (1980), 99-103. · Zbl 0477.22001
[8] FRIČ R., KOUTNÍK V.: Completions of convergence groups.General Topology and its Relations to Modern Analysis and Algebra VI. (Proc. Sixth. Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 187-201.
[9] FRIČ R., ZANOLIN F.: A convergence group having no completion. Convergence Structures and Applications, II. (Proc. Schwerin Conference) Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik 2 1984, Akademie-Verlag, Berlin, 1984, pp. 47-48. · Zbl 0575.54004
[10] FRIČ R., ZANOLIN F.: Coarse convergence groups. Convergence Structures 1884. (Proc. Conf. on Convergence, Bechyně 1984), Akademie-Verlag, Berlin, 1985, pp. 107-114.
[11] FRIČ R., ZANOLIN F.: Coarse sequential convergence in groups. etc., Czechoslovak Math. J. 40 (1990), 459-467. · Zbl 0747.54002
[12] GRECO G. H.: The sequential defect of the cross topology is \omega 1. Topology Appl. 19 (1985), 91-94. · Zbl 0569.54028
[13] KANNAN V.: Ordinal invariants in topology. Mem. Amer. Math. Soc. 32 no. 245 (1981). · Zbl 0473.54001
[14] KNEIS G.: Eine allgemeine Theorie der Vervollstandigung und Čech-Stone-Kompaktifizierung. (Dr. Sc. Nat. Dissertation), Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, 1983.
[15] KNEIS G.: Completion of sequential convergence groups. Proc. Conf. Topology and Measure IV, Greifswald 1984, Part 1. Wiss. Beitr. der Ernst-Moritz-Arnd Universität Greifswald, pp. 125-132. · Zbl 0579.54004
[16] KOUTNÍK V.: Completeness of sequential convergence groups. Studia Math. 77 (1984), 454-464. · Zbl 0546.54006
[17] KOUTNÍK V., NOVÁK J.: Completion of a class of convergence rings.
[18] NOVÁK J.: On convergence spaces and their sequential envelopes. Czechoslovak Math. J. 15 (1965), 74-100. · Zbl 0139.15906
[19] NOVÁK J.: On completions of convergence commutative groups. General Topology and its Relations to Modern Analysis and Algebra III. (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, 1972, pp. 335-340.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.