zbMATH — the first resource for mathematics

A class of bicovariant differential calculi on Hopf algebras. (English) Zbl 0776.58005
The authors introduce a class of bicovariant differential calculi on any quantum group. They construct a bicovariant differential calculi based on the abstract theory of Hopf algebra. Several examples are given at the end.

46L85 Noncommutative topology
46L87 Noncommutative differential geometry
81R30 Coherent states
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
Full Text: DOI arXiv
[1] Abe, E., Hopf Algebras, Cambridge Univ. Press, 1980. · Zbl 0476.16008
[2] Brzeziński, T., Remarks on bicovariant differential calculi and exterior Hopf algebras, Preprint DAMTP/92-11, 1992. · Zbl 0776.58005
[3] BrzezińskiT., DabrowskiH., and RembielińskiJ., On the quantum differential calculus and the quantum holomorphicity, J. Math. Phys. 33, 19 (1992). · Zbl 0753.17017
[4] Brzeziński, T. and Majid, S., Quantum group gauge theory on quantum spaces, Preprint DAMTP/92-27, 1992. · Zbl 0817.58003
[5] CoquerauxR. and KastlerD., Remarks on the differential envelopes of associative algebras, Pacific J. Math. 137, 245 (1989).
[6] Fadeev, L. D., Reshetikhin, N. Yu., and Takhtajan, L. A., Quantization of Lie groups and Lie algebras, Algebra i Analiz 1, 1989.
[7] JurcoB., Differential calculus on quantized simple Lie groups, Lett. Math. Phys. 22, 177 (1991); U. Carow-Watamura et al., Bicovariant differential calculus on quantum groups SU q (N) and SO q (N), Comm. Math. Phys. 142, 605 (1991). · Zbl 0753.17020
[8] KastlerD., Cyclic Cohomology within Differential Envelope, Hermann, Paris, 1988.
[9] MajidS., Examples of braided groups and braided matrices, J. Math. Phys. 32, 3246 (1991); Rank of quantum groups and braided groups in dual form, in Lecture Notes in Math. 1510, Springer-Verlag, New York, 1992, pp. 79–88. · Zbl 0821.16042
[10] Majid, S., Quantum and braided linear algebra, J. Math. Phys. (in press). · Zbl 0781.17005
[11] MaltsiniotisG., Groupes quantiques et structures différentielles, C. R. Acad. Sci. Paris, Serie I311, 831 (1990).
[12] Manin, Yu. I., Notes on quantum groups and quantum de Rham complexes, Preprint MPI, 1991. · Zbl 0810.17003
[13] Sudbery, A., The algebra of differential forms on a full metric bialgebra, Yourk University preprint, 1991. · Zbl 0815.17012
[14] Sudbery, A., Canonical differential calculus on quantum linear groups and super-groups, York University preprint, 1992.
[15] SweedlerM. E., Hopf Algebras, Benjamin, New York, 1969.
[16] WoronowiczS. L., Twisted su2 group. An example of a non-commutative differential calculus, Publ. RIMS Kyoto 23, 117 (1987). · Zbl 0676.46050
[17] WoronowiczS. L., Differential calculus on compact matric pseudogroups (quantum groups), Comm. Math. Phys. 122, 125 (1989). · Zbl 0751.58042
[18] Zumino, B., Introduction to the differential geometry of quantum groups, in K. Schmüdgen (ed), Proc. Mathematical Physics X, Leipzig, Germany, 1991, Springer-Verlag, 1992, p. 20. · Zbl 1020.81651
[19] SchuppP., WattsP., and ZuminoB., Differential geometry on linear quantum groups, Lett. Math. Phys. 25, 139 (1992). · Zbl 0765.17020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.