zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Connection formulae for the first Painlevé transcendent in the complex domain. (English) Zbl 0777.34007
The authors study the first Painlevé equation (1) $y''=6y\sp 2+x$ and the auxiliary linear ordinary differential equation $${d \psi \over d\lambda}= \left\{(4\lambda\sp 2+x+2y\sp 2) \sigma\sb 3-i(4y \lambda\sp 2+x+2y\sp 2)\sigma\sb 2- \left(2y'\lambda+{1 \over 2\lambda} \right) \sigma\sb 1\right\} \psi. \tag 2 $$ They then go on using the isomonodrome deformation method to find a complete asymptotic descriptions of the first Painlevé transcendent in the complex domain by relating equations (1) and (2). The starting point is a result due to M. Jimbo and T. Mirva, whereby an analytic function $y(x)$ is a solution of equation (1) if and only if the monodromy data of equation (2) do not depend on $x$. The authors then explore this relationship using the Stokes multipliers $s\sb k$. A very elegant treatment is then presented whereby asymptotic descriptions are presented for the solutions of the equation (1) connecting to the Stokes multiplier constraints in sectors of the complex plane. Several theorems are proven such as if $y(x)$ is a solution of (1) subject to Stokes multiplier constraints $s\sb{5- 2\ell}=0$, then in the sector $\Omega\sb \ell:{3\pi\over 5}+{2\pi\over 5}\ell<\varphi=\text{arg} x<{7\pi\over 5}+{2\pi\over 5}\ell$, $\ell=0$, $\pm 1,\dots$, the solution $y(x)$ has asymptotics $$y(x)=\mu\sum\sp \infty\sb{n=0}a\sb nu\sp{-sn}+{\cal O}(u\sp{-\infty})\text{ where } u=\vert x/6\vert\sp{1/2}\exp \left[i \left({\varphi-\pi \over 2}-\pi \ell \right)\right]\text{ as } \vert x\vert\to\infty\text{ in } \Omega\sb \ell.$$

34M55Painlevé and other special equations; classification, hierarchies
34E20Asymptotic singular perturbations, turning point theory, WKB methods (ODE)
34E05Asymptotic expansions (ODE)
42A38Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Full Text: DOI
[1] Garnier, R.,Ann. Sci. Ecole Norm. Sup. 29, 1-126 (1912). · Zbl 43.0382.01
[2] Jimbo, M. and Miwa, T.,Physica D 2, 407 (1981). · Zbl 1194.34166 · doi:10.1016/0167-2789(81)90021-X
[3] Kapaev, A. A.,Differential Equations 24, 1107 (1988).
[4] Joshi, N. and Kruskal, M. D., Connection results for the first Painlev? equation, School of Math. Univ. of New South Wales, Applied Math. Preprint, AM 91/4 (1991).
[5] Kitaev, A. V., Mathematical problems of wave propagation theory. 19,Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov 179, 101-109 (1989). · Zbl 0708.34059
[6] Its, A. R. and Novokshonov, V. Yu.,The Isomonodromic Deformation Method in the Theory of Painlev? Equations, Lecture Notes in Math. 1191, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986.
[7] Boutroux, P.,Ann. Sci. Ecole Norm. Sup. 30, 265-375 (1913);31, 99-159 (1914).
[8] Joshi, N. and Kruskal, M. D.,Phys. Lett. A 130, 129-137 (1988). · doi:10.1016/0375-9601(88)90415-X