zbMATH — the first resource for mathematics

Parametrix construction for a class of subelliptic differential operators. (English) Zbl 0777.35002
The author considers second order partial differential operators of the form \[ L(x,\partial_ x)=A(x,\partial_{x'})-\beta(x)\partial^ 2_{x_ n},\tag{*} \] where \(\beta(x)\) is nonnegative and satisfies the inequality \(\sum_{|\alpha|\leq k}|\partial^ \alpha_{x'}\beta(x)|\geq c_ 0>0\), with \(x'=(x_ 1,\dots,x_{n- 1})\). The operator \(A(x,\partial_{x'})\) is assumed to be an elliptic differential operator in the variables \(x'\), with nonnegative principal symbol, and with coefficients that may depend on \(x_ n\).
The author proves that operators like (*) have parametrices that are pseudo-differential operators with principal symbol equivalent to \[ \bigl[|\xi'|+\sum_{|\alpha|\leq k}|\partial^ \alpha_{x'}\beta(x)\xi^ 2_ n|^{1/(|\alpha|+2)}\bigr]^{-2}. \] From this result, the author derives a sharp regularity result on Sobolev spaces. The strong results proved in this paper required quite delicate techniques, ingeniously combined with some powerful results coming from the Calderon- Zygmund theory.

35A08 Fundamental solutions to PDEs
35D10 Regularity of generalized solutions of PDE (MSC2000)
35S05 Pseudodifferential operators as generalizations of partial differential operators
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
46B70 Interpolation between normed linear spaces
Full Text: DOI
[1] S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of \(N\)-body Schrödinger operators , Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ, 1982. · Zbl 0503.35001
[2] R. Beals, \(L\spp\) and Hölder estimates for pseudodifferential operators: sufficient conditions , Ann. Inst. Fourier (Grenoble) 29 (1979), no. 3, vii, 239-260. · Zbl 0387.35065 · doi:10.5802/aif.760 · numdam:AIF_1979__29_3_239_0 · eudml:74422
[3] R. Beals, Weighted distribution spaces and pseudodifferential operators , J. Analyse Math. 39 (1981), 131-187. · Zbl 0474.35089 · doi:10.1007/BF02803334
[4] A.-P. Calderón, Lebesgue spaces of differentiable functions and distributions , Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 33-49. · Zbl 0195.41103
[5] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes , Springer-Verlag, Berlin, 1971. · Zbl 0224.43006 · doi:10.1007/BFb0058946
[6] C. L. Fefferman, The uncertainty principle , Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129-206. · Zbl 0526.35080 · doi:10.1090/S0273-0979-1983-15154-6
[7] C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems , Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 590-606. · Zbl 0503.35071
[8] C. L. Fefferman and A. Sanchez-Calle, Fundamental solutions for second order subelliptic operators , Ann. of Math. (2) 124 (1986), no. 2, 247-272. JSTOR: · Zbl 0613.35002 · doi:10.2307/1971278 · links.jstor.org
[9] L. Hormander, The Weyl calculus of pseudodifferential operators , Comm. Pure Appl. Math. 32 (1979), no. 3, 360-444.
[10] A. Nagel and E. M. Stein, Some new classes of pseudodifferential operators , Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 2, Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 159-169. · Zbl 0427.35081
[11] A. Nagel and E. M. Stein, Lectures on pseudodifferential operators: regularity theorems and applications to nonelliptic problems , Mathematical Notes, vol. 24, Princeton University Press, Princeton, N.J., 1979. · Zbl 0415.47025
[12] O. A. Oleinik and E. Radkevitch, Second Order Equations with Nonnegative Characteristic Form , Amer. Math. Soc., Providence, R.I., 1973.
[13] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups , Acta Math. 137 (1976), no. 3-4, 247-320. · Zbl 0346.35030 · doi:10.1007/BF02392419
[14] H. F. Smith, The subelliptic oblique derivative problem , Comm. Partial Differential Equations 15 (1990), no. 1, 97-137. · Zbl 0711.35157 · doi:10.1080/03605309908820679
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.