Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity. (English) Zbl 0777.92003

Summary: Three patterns of burst generation and chaos mechanism have been presented in the Rose-Hindmarsh model [J. L. Hindmarsh and R. M. Rose, Nature, Lond. 296, 162-164 (1982), and Proc. R. Soc. Lond., Ser. B 221, 87-102 (1984)] for different parameter regions. We describe the fourth burst pattern exhibited in the model for \(I\leq 2.3\), and obtain the bifurcation portrait for this model over parameter space. The portrait gives a qualitative explanation of burst generation and chaotic mechanism, and provides a qualitative representation how the system evolves over the parameter space.


92C20 Neural biology
92-08 Computational methods for problems pertaining to biology
37N99 Applications of dynamical systems
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI


[1] Hindmarsh, J. L.; Rose, R. M., A model of the nerve impulse using two first-order differential equations, Nature Lond., 296, 162-164 (1982)
[2] Hindmarsh, J. L.; Rose, R. M., A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. Lond., B221, 87-102 (1984)
[3] Holden, A. V.; Hyde, J.; Muhamad, M. A.; Zhang, H. G., Bifurcating neurones, (Taylor, J. G.; Mannion, C. L.T., Coupled Oscillating Neurones (1992), Springer: Springer Berlin), 41-80
[4] Chay, T. R.; Keixer, J., Minimal model for membrane oscillation in the pancreatic beta-cell, Biophys. J., 42, 181-190 (1983)
[5] Chay, T. R., Chaos in a three-variable model of an excitable cell, Physica, 16D, 233-242 (1985) · Zbl 0582.92007
[6] Chay, T. R.; Rinzel, J., Bursting, beating, and chaos in an excitable membrane model, Biophys. J., 47, 357-366 (1985)
[7] Degn, H.; Holden, A. V.; Olsen, L. F., Chaos in biological systems (1987), Plenum: Plenum New York, NATO ASI Series
[8] Terman, D., Chaotic spikes arising from a model for bursting in excitable membranes, SIAM J. Appl. Math., 15, 1428-1450 (1991) · Zbl 0754.58026
[9] Terman, D., The transition from bursting to continuous spiking in excitable models, J. Nonlinear Sci., 2, 135-182 (1992) · Zbl 0900.92059
[10] Holden, A. V.; Fan, Y. S., From simple to simple bursting oscillatory behaviour via chaos in the Rose-Hindmarsh model for neuronal activity, Chaos, Solitons & Fractals, 2, 3, 221-236 (1992) · Zbl 0766.92006
[11] Holden, A. V.; Fan, Y. S., From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity, Chaos, Solitons & Fractals, 2, 4, 349-369 (1992) · Zbl 0753.92009
[12] Holden, A. V.; Fan, Y. S., Crisis-induced chaos in the Rose-Hindmarsh model for neuronal activity, Chaos, Solitons & Fractals, 2, 6, 583-595 (1992) · Zbl 0766.92007
[13] Wang, X. J., Genesis of bursting oscillation in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle (1992), preprint · Zbl 0783.58053
[14] Fitzhugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445-466 (1961)
[15] Grebogi, C.; Ott, E.; Yorke, J. A., Critical exponent of chaotic transients in nonlinear dynamical systems, Phys. Rev. Lett., 57, 11, 1284-1287 (1986)
[16] Grebogi, C.; Ott, E.; Romeriras, F.; Yorke, J. A., Critical exponents for crisis-induced intermittency, Phys. Rev., A36, 5365-5380 (1987)
[17] Decroly, O.; Goldbeter, A., Selection between multiple periodic regimes in a biochemical system: complex dynamic behaviour resolved by use of one-dimensional maps, J. Theor. Biol., 133, 649-671 (1985)
[18] Decroly, O.; Goldbeter, A., From simple to complex oscillatory behaviour: analysis of bursting in a multiply regulated biochemical system, J. Theor. Biol., 124, 219-250 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.