Larsen, M.; Pink, R. On \(\ell\)-independence of algebraic monodromy groups in compatible systems of representations. (English) Zbl 0778.11036 Invent. Math. 107, No. 3, 603-636 (1992). The paper studies compatible systems of \(\ell\)-adic Galois representations (\(\ell\) a varying prime), as arise from the étale cohomologies of algebraic varieties. The purpose seems to be to derive as much as possible from general principles. The main results are as follows: Let \(G_ \ell\) denote the connected reductive part of \(\text{Im}(\rho_ \ell)\). Then there exists a finite Galois extension \(E\) of \(\mathbb{Q}\) such that, except for \(\ell\) in a set of density zero, \(G_ \ell\) splits over \(E\mathbb{Q}_ \ell\) and its Weyl group depends only on the conjugacy class of \(\text{Frob}_ \ell\) in \(\text{Gal}(E/\mathbb{Q})\). Furthermore, if all \(\rho_ \ell\) are absolutely irreducible, the root- datum and the representation of \(G_ \ell\) also depend only on the conjugacy class of \(\text{Frob}_ \ell\). Reviewer: G.Faltings (Princeton) Cited in 1 ReviewCited in 38 Documents MSC: 11G35 Varieties over global fields 22E46 Semisimple Lie groups and their representations 14F20 Étale and other Grothendieck topologies and (co)homologies Keywords:compatible systems of \(\ell\)-adic Galois representations; étale cohomologies of algebraic varieties × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Bourbaki, N.: Groupes et alg?bres de Lie. Paris: Masson 1981 · Zbl 0483.22001 [2] Carter, R.W.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. Chichester: John Wiley and Sons 1985 · Zbl 0567.20023 [3] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups. Oxford. Clatendon Press 1985 · Zbl 0568.20001 [4] Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Transl. II. Ser., Am. Math. Soc.6, 111-244 (1957) · Zbl 0077.03404 [5] Faltings, G.: Endlichkeitss?tze f?r abelsche Variet?ten ?ber Zahlk?rpern. Invent. Math.73, 349-366 (1983) · Zbl 0588.14026 · doi:10.1007/BF01388432 [6] Harder, G.: Bericht ?ber neuere Resultate der Galoiskohomologie halbeinfacher Gruppen. Jahresber. Dtsch. Math.-Ver.70, 182-216 (1968) · Zbl 0194.05701 [7] Harder, G.: Eine Bemerkung zum schwachen Approximationssatz. Arch. Math.19, 465-471 (1968) · Zbl 0205.25104 · doi:10.1007/BF01898766 [8] Kneser, M.: Schwache Approximation in algebraischen Gruppen. In: Colloque sur la th?orie des groupes alg?briques, pp. 41-52. Bruxelles: Centre Belge de Recherches Math?matiques 1962 [9] Kneser, M.: Galoiskohomologie halbeinfacher algebraischer Gruppen ?ber ?-adischen K?rpern, Teil II. Math. Z.89, 250-272 (1965) · doi:10.1007/BF02116869 [10] Kottwitz, R.: Rational conjugacy classes in reductive groups. Duke Math. J.49 (No. 4), 785-806 (1982) · Zbl 0506.20017 · doi:10.1215/S0012-7094-82-04939-0 [11] Larsen, M., Pink, R.: Determining representations from invariant dimensions. Invent. Math.102, 377-398 (1990) · Zbl 0687.22004 · doi:10.1007/BF01233432 [12] Serre, J.-P.: R?sum? des cours 1965-1966. In: Annuaire du Coll?ge de France, pp. 49-58 (1966) [13] Serre, J.-P.: Sur les groupes de Galois attach?es aux groupesp-divisibles. In: Proc. Conf. Local Fields Driebergen, pp. 118-131. Berlin Heidelberg New York: Springer 1966 [14] Serre, J.-P.: Abelian ?-adic representations and elliptic curves. New York: W.A. Benjamin 1968 · Zbl 0186.25701 [15] Serre, J.-P.: Letter to K. Ribet. (January 1, 1981) [16] Serre, J.-P.: Letter to K. Ribet. (January 29, 1981) [17] Serre, J.-P.: R?sum? des cours 1984-85. In: Annuaire du Coll?ge de France, pp. 85-91 (1985) [18] Springer, T.A.: Reductive groups. In: Borel, A., Casselman, W. (eds.) Automorphic forms, representations andL-functions. Corvallis 1977. (Proc. Symp. Pure Math., vol. 33, part 1, pp. 3-27) Providence, RI: Am. Math. Soc. 1979 [19] Tits, J.: Representations lin?aires irr?ductibles d’un groupe r?ductif sur un corps quelconque. J. Reine Angew. Math.247, 196-220 (1971) · Zbl 0227.20015 · doi:10.1515/crll.1971.247.196 [20] Tits, J.: Reductive groups over local fields. In: Borel, A., Casselman, W. (eds.) Automorphic forms, representations andL-functions. Corvallis 1977. (Proc. Symp. Pure Math., vol. 33, part 1, pp. 29-69) Providence, RI: Am. Math. Soc. 1979 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.