×

On the Born-Oppenheimer approximation of wave operators in molecular scattering theory. (English) Zbl 0778.35088

Summary: We study the diatomic molecular scattering by reducing the number of particles through Born-Oppenheimer approximation. Under a non-trapping assumption on the effective potential of the molecular Hamiltonian we use semiclassical resolvent estimates to show that non-adiabatic corrections to the adiabatic (or Born-Oppenheimer) wave operators are small. Furthermore we study the classical limit of the adiabatic wave operators by computing its action on quantum observables microlocalized by use of coherent states.

MSC:

35Q40 PDEs in connection with quantum mechanics
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
35P25 Scattering theory for PDEs
Full Text: DOI

References:

[1] [A] Agmon, S.: Lectures on exponential decay of solutions of second-order elliptic equations. Princeton, NJ: Princeton University Press 1982 · Zbl 0503.35001
[2] [BO] Born, M., Oppenheimer, R.: Zur Quantentheorie der Moleküln. Ann. Physik84, 457 (1927) · JFM 53.0845.04 · doi:10.1002/andp.19273892002
[3] [CDS] Combes, J. M., Duclos, P., Seiler, R.: The Born-Oppenheimer approximation. Rigorous Atomic and Molecular Physics. Wightman, A. S. and Velo, G., eds.. New York: Plenum 1981
[4] [Ch] Child, M. S.: Semiclassical methods in molecular scattering and spectroscopy. Proc. of NATO conferences, D. Reidel 1980
[5] [De] Delos, J. B.: Theory of electronic transitions in slow atomic collisions. Rev. Mod. Phys.53, 287–358 (1981) · doi:10.1103/RevModPhys.53.287
[6] [DH] Duclos, P., Hogreve, H.: On the stability of positive diatomic molecular ions. Preprint 1990
[7] [GM] Gerard, C., Martinez, A.: Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée. C. R. Acad. Sci.306, 121–123 (1988)
[8] [HS1] Helffer, B., Sjostrand, J.: Multiple wells in the semiclassical limit 1. Comm. PDE9, 337–408 (1984) · Zbl 0546.35053 · doi:10.1080/03605308408820335
[9] [HS2] Helffer, B., Sjostrand, J.: Opératuers de Schrödinger avec champs magnétiques faibles et constants. Exposé No. XII, Séminaire EDP, février 1989, Ecole Polytechniques
[10] [IK] Isozaki, H., Kitada, H.: Modified wave operators with time-dependent modifiers. J. Fac. Sci. Univ. Tokyo,32, 77–104 (1985) · Zbl 0582.35036
[11] [K] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0342.47009
[12] [KMSW] Klein, M., Martinez, A., Seiler, R., Wang, X. P.: On the Born-Oppenheimer expansion for polyatomic molecules. Commun. Math. Phys.143, 607–639 (1992) · Zbl 0754.35099 · doi:10.1007/BF02099269
[13] [M] Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators. Commun. Math. Phys.78, 391–408 (1981) · Zbl 0489.47010 · doi:10.1007/BF01942331
[14] [Ra] Raphaelian, A.: Ion-atom scattering within a Born-Oppenheimer framework. Dissertation TU Berlin 1986
[15] [RS] Reed, M, Simon, B.: Methods of modern mathematical physics 3. New York: Academic Press 1979
[16] [Ro] Robert, D.: Autour de l’approximation semiclassique. Progress in Math., No. 68. Basel, Boston: Birkhäuser 1987
[17] [RT] Robert, D., Tamura, H.: Semiclassical estimates for resolvents and asymptotics for total scattering cross-section. Ann. IHP46, 415–442 (1987) · Zbl 0648.35066
[18] [W1] Wang, X. P.: Time-decay of scattering solutions and resolvent estimates for semiclassical Schrödinger operators. J. Diff. Equations71, 348–395 (1988) · Zbl 0651.35022 · doi:10.1016/0022-0396(88)90032-0
[19] [W2] Wang, X. P.: Time-decay of scattering solutions and classical trajectories. Ann. IHP47, 25–37 (1987) · Zbl 0641.35018
[20] [W3] Wang, X. P.: Time-delay operators in semiclassical limit 2. Short-range potentials. Trans. AMS322, 395–415 (1990) · Zbl 0714.35064 · doi:10.2307/2001538
[21] [W4] Wang, X. P.: Semiclassical resolvent estimates for N-body Schrödinger operators. J. Funct. Anal.97, 466–483 (1991) · Zbl 0739.35047 · doi:10.1016/0022-1236(91)90011-S
[22] [WO] Wu, T. Y., Ohmura, T.: Quantum theory of scattering. Prentice-Hall 1962 · Zbl 0118.44005
[23] [Y] Yajima, K.: The quasi-classical limit of quantum scattering theory. Commun. Math. Phys.69, 101–129 (1979) · Zbl 0425.35076 · doi:10.1007/BF01221443
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.