×

zbMATH — the first resource for mathematics

Characterization of the quotient spaces of \((s)\) in the tame category. (English) Zbl 0778.46012
There is given a complete characterization of the quotient spaces of \(s\), the space of rapidly decreasing sequences, in the tame category of graded Fréchet spaces. Besides, the proof yields an internal description of the tame direct summands of \(s\), another proof of which, based on interpolation theory is contained in D. Vogt [Trans. Am. Math. Soc. 319, No. 1, 191-208 (1990; Zbl 0724.46007)]. The present paper continues [Arch. Math. 54, No. 3, 274-283 (1990; Zbl 0663.46003)], in which the subspaces of \(s\) is the tame category are characterized.

MSC:
46A45 Sequence spaces (including Köthe sequence spaces)
46A04 Locally convex Fréchet spaces and (DF)-spaces
46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dubinsky, Bull. Acad. Polon. Sci. 34 pp 65– (1986)
[2] Hamilton, Bull. Amer. Math. Soc. 7 pp 65– (1982)
[3] Topologische lineare Räume, Springer 1960
[4] Topological vector spaces II, New York, Heidelberg, Berlin: Springer (Grundlagen der mathematischen Wissenschaften 237) · Zbl 0417.46001
[5] Lojasiewicz, Journ. of Funct. Anal. 33 pp 165– (1979)
[6] Moser, Proc. Nat. Acad. Sci. USA 47 pp 1824– (1961)
[7] Petzsche, Manuscr. math. 27 pp 221– (1979)
[8] Nuclear locally convex spaces, Ergebnisse der Math. 66, Springer 1972
[9] Poppenberg, Arch. Math. 54 pp 274– (1990)
[10] Unterräume und Quotienten von (s) in der zahmen Kategorie, Ph. D. Thesis, Dortmund (1987)
[11] Topological vector spaces, Berlin–Heidelberg–New York 1971
[12] Sergeraert, Ann. scient. Éc. Norm. Sup., 46 série 5 pp 599– (1972)
[13] Tidden, Manuscr. Math. 27 pp 291– (1979)
[14] Vogt, Math. Z. 155 pp 109– (1977)
[15] Power series space representations of nuclear Fréchet spaces, to appear
[16] Subspaces and quotient spaces of (s), Funct. anal. surv. and rec. results, (Ed.: K. D. Bierstedt and B. Fuchssteiner), Proc. Conf. Paderborn (1976) 167–187
[17] Vogt, Math. Z. 196 pp 523– (1987)
[18] Vogt, Arch. Math. (Basel) 45 pp 255– (1985) · Zbl 0621.46001
[19] Vogt, Stud. Math. 67 pp 225– (1980)
[20] Vogt, Stud. Math. 70 pp 63– (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.