×

Minimizing the squared mean curvature integral for surfaces in space forms. (English) Zbl 0778.53001

The experiments which are described in this paper support the conjecture that smooth minimizers of the squared mean curvature integral for closed surfaces exist for each genus and that they are stereographic projections of certain minimal surfaces in the three-sphere. The authors use a discrete version of this integral for polyhedral surfaces and apply Brakke’s surface evolver [see K. A. Brakke, ibid. 1, No. 2, 141-165 (1992; Zbl 0769.49033)] to compute the evolution of the polyhedral surfaces under the corresponding flow. A detailed description of the results of the experiments is given, including some hints for appropriate adjustments of the numerical procedures making the iterations convergent.

MSC:

53A05 Surfaces in Euclidean and related spaces
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53-04 Software, source code, etc. for problems pertaining to differential geometry

Citations:

Zbl 0769.49033

References:

[1] Brakke K. A., Experimental Mathematics 1 pp 141– (1992)
[2] Bryant R., J. Differential Geom. 20 pp 23– (1984) · Zbl 0555.53002 · doi:10.4310/jdg/1214438991
[3] Bryant R., Proc. Sympos. Pure Math. 48 pp 227– (1988) · doi:10.1090/pspum/048/974338
[4] Choi H. I., Invent. Math. 81 pp 387– (1985) · Zbl 0577.53044 · doi:10.1007/BF01388577
[5] Darboux G., Leçons sur la Théorie Générale des Surfaces 1 pp 265– (1887)
[6] Karcher H., J. Differential Geom. 28 pp 169– (1988)
[7] Kusner R., Bull. Amer. Math. Soc. 17 pp 291– (1987) · Zbl 0634.53004 · doi:10.1090/S0273-0979-1987-15564-9
[8] Kusner R., Pacific J. Math. 138 pp 317– (1989) · Zbl 0643.53044 · doi:10.2140/pjm.1989.138.317
[9] DOI: 10.2307/1970625 · Zbl 0205.52001 · doi:10.2307/1970625
[10] DOI: 10.1103/PhysRevLett.66.2404 · doi:10.1103/PhysRevLett.66.2404
[11] Simon L., Proc. Cen. Math. Anal. Aust. Nat. Univ. 10 pp 187– (1986)
[12] DOI: 10.1007/BF02954615 · JFM 49.0530.02 · doi:10.1007/BF02954615
[13] Underwood A., ”Polyhedral mean curvature and its relationship to smooth mean curvature” (1992)
[14] Weiner J., Indiana U. Math. J. 27 pp 19– (1978) · Zbl 0343.53038 · doi:10.1512/iumj.1978.27.27003
[15] Willmore T. J., Analelc Stiintifice ale Universitatii ”Al. I. Cuza” din Iasi (Sect. Ia) 11 pp 493– (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.