Johnson, Claes; Hansbo, Peter Adaptive finite element methods in computational mechanics. (English) Zbl 0778.73071 Comput. Methods Appl. Mech. Eng. 101, No. 1-3, 143-181 (1992). Summary: We present a general approach to adaptivity for finite element methods and give applications to linear elasticity, nonlinear elasto-plasticity and nonlinear conservation laws, including numerical results. Cited in 1 ReviewCited in 121 Documents MSC: 74S05 Finite element methods applied to problems in solid mechanics 74B05 Classical linear elasticity 74C99 Plastic materials, materials of stress-rate and internal-variable type 35L65 Hyperbolic conservation laws Keywords:nonlinear elasto-plasticity; nonlinear conservation laws PDF BibTeX XML Cite \textit{C. Johnson} and \textit{P. Hansbo}, Comput. Methods Appl. Mech. Eng. 101, No. 1--3, 143--181 (1992; Zbl 0778.73071) Full Text: DOI References: [1] Eriksson, K., Adaptive finite element methods based on optimal error estimates for linear elliptic problems, (Technical Report (1987), Chalmers University of Technology) [2] Eriksson, K.; Johnson, C., Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal., 28, 43-77 (1991) · Zbl 0732.65093 [3] Eriksson, K.; Johnson, C., Adaptive finite element methods for parabolic problems II: A priori error estimates in \(L_{−8}(L_2)\), (Technical Report (1992), Chalmers University of Technology) [4] Eriksson, K.; Johnson, C., Adaptive finite element methods for parabolic problems III: Time steps variable in space and non-coercive problems, (Technical Report (1992), Chalmers University of Technology) [5] Eriksson, K.; Johnson, C., Adaptive finite element methods for parabolic problems IV: Non-linear problems, (Technical Report (1992), Chalmers University of Technology) [8] Eriksson, K.; Johnson, C., An adaptive finite element method for linear elliptic problems, Math. Comp., 50, 361-383 (1988) · Zbl 0644.65080 [9] Eriksson, K.; Johnson, C., Error estimates and automatic time step control for nonlinear parabolic problems, I, SIAM J. Numer. Anal., 24, 12-23 (1987) · Zbl 0618.65104 [10] Johnson, C., Error estimates and adaptive time step control for a class of one step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25, 908-926 (1988) · Zbl 0661.65076 [11] Johnson, C., Adaptive finite element methods for diffusion and convection problems, Comput. Methods Appl. Mech. Engrg., 82, 301-322 (1990) · Zbl 0717.76078 [12] Johnson, C., Adaptive finite element methods for the obstacle problem, (Technical Report (1991), Chalmers University of Technology: Chalmers University of Technology Göteborg), to appear in \(M^3\) AS. · Zbl 0767.65056 [13] Johnson, C.; Hansbo, P., Adaptive finite element methods for small strain elasto-plasticity, (Proc. IUTAM Conf. on Finite Inelastic Deformations — Theory and Applications (1991), Univ. of Hannover), in press. [14] Johnson, C., Discontinuous Galerkin finite element methods for second order hyperbolic problems, (Technical Report (1991), Chalmers University of Technology: Chalmers University of Technology Göteborg), to appear in Comput. Methods Appl. Mech. Engrg. · Zbl 0787.65070 [15] Hansbo, P.; Johnson, C., Adaptive streamline diffusion methods for compressible flow using conservation variables, Comput. Methods Appl. Mech. Engrg., 87, 267-280 (1991) · Zbl 0760.76046 [17] Johnson, C., A new approach to algorithms for convection problems which are based on exact transport + projection, Comput. Methods Appl. Mech. Engrg., 100, 45-62 (1992) · Zbl 0825.76413 [18] Babuška, I.; Rheinboldt, W. C., A posteriori error estimators for the finite element method, Internat. J. Numer. Methods Engrg., 12, 1597-1615 (1978) · Zbl 0396.65068 [19] Babuška, I., Feedback, adaptivity and a posteriori estimates in finite elements: Aims, theory, and experience, (Babuška, I.; etal., Accuracy Estimates and Adaptive Refinements in Finite Element Computations (1986), Wiley: Wiley New York), 3-23 [20] Bank, R.; Weiser, A., Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44, 283-301 (1985) · Zbl 0569.65079 [21] Oden, J. T.; Demkowicz, L.; Rachowicz, W.; Westermann, T. A., Toward a universal \(h-p\) adaptive finite element strategy, Part 2. A posteriori error estimation, Comput. Methods Appl. Mech. Engrg., 77, 113-180 (1989) · Zbl 0723.73075 [22] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24, 337-357 (1987) · Zbl 0602.73063 [23] Ainsworth, M.; Zhu, J. Z.; Craig, A. W.; Zienkiewicz, O. C., Analysis of the Zienkiewicz-Zhu a posteriori error estimator in the finite element method, Internat. J. Numer. Methods Engrg., 28, 2161-2174 (1989) · Zbl 0716.73082 [24] Verfürth, R., A posteriori error estimators for the Stokes equation, Numer. Math., 55, 309-325 (1989) · Zbl 0674.65092 [25] Rank, E.; Zienkiewicz, O. C., A simple error estimator in the finite element method, Comm. Appl. Numer. Methods, 3, 243-249 (1987) · Zbl 0623.65120 [26] Peraire, J.; Vahdati, M.; Morgan, K.; Zienkiewicz, O. C., Adaptive remeshing for compressible flow computations, J. Comput. Phys., 72, 449-466 (1987) · Zbl 0631.76085 [27] Simo, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: Computational aspects, Comput. Methods Appl. Mech. Engrg., 68, 1-31 (1988) · Zbl 0644.73043 [28] Temam, R., Mathematical problems in plasticity (1985), Gauthier-Villars: Gauthier-Villars Paris · Zbl 0457.73017 [29] Jespersen, D., Ritz-Galerkin methods for singular boundary value problems, SIAM J. Numer. Anal., 15, 813-834 (1978) · Zbl 0393.65043 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.