×

zbMATH — the first resource for mathematics

On actions of \(\mathbb{C}^*\) on algebraic spaces. (English) Zbl 0779.14014
The main result of the paper says that all schematic points of the source of an action of \(\mathbb{C}^*\) on an algebraic space \(X\) are schematic on \(X\).

MSC:
14L30 Group actions on varieties or schemes (quotients)
32M05 Complex Lie groups, group actions on complex spaces
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
PDF BibTeX XML Cite
Full Text: DOI Numdam
References:
[1] A. BIALYNICKI-BIRULA, A. SOMMESE, Quotients by C* and sl(2) actions, Trans. Amer. Math. Soc., 279 (1983), 773-800. · Zbl 0566.32026
[2] W. KAUP, Reele transformationsgruppen und invariante metriken auf komplexen raumen, Invent. Math., 3 (1967), 43-70. · Zbl 0157.13401
[3] D. KNUTSON, Algebraic spaces, Lecture Notes in Mathematics, 203, (1971), Springer-Verlag. · Zbl 0221.14001
[4] D. LUNA, Toute variété de moisezon presque homogène sous un tore est un schéma, C.R. Acad. Sci. Paris, 314, Série I, (1992), 65-67. · Zbl 0774.14001
[5] D. MUMFORD, J. FOGARTY, Geometric invariant theory, 2nd edition, Ergeb. Math. 36, Springer-Verlag, 1982. · Zbl 0504.14008
[6] B.G. MOISEZON, Resolution theorems for compact complex spaces with a sufficiently large field of meromorphic functions, Izv. Akad. Nauk SSSR, Ser. Mat., 31 (1967), 1385. · Zbl 0186.26205
[7] J.-P. SERRE, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, 6 (1955-1956), 1-42. · Zbl 0075.30401
[8] J.-P. SERRE, Espaces fibrés algébriques in anneaux de Chow et applications, Séminaire Chevalley, E.N.S. Paris, 1958.
[9] H. SUMIHIRO, Equivariant completions I, J. Math. Kyoto Univ., 14 (1974), 1-28. · Zbl 0277.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.