Białynicki-Biruła, Andrzej On induced actions of algebraic groups. (English) Zbl 0779.14015 Ann. Inst. Fourier 43, No. 2, 365-368 (1993). In this paper we study the existence problem for products \(X\times_ GY\) in the categories of quasi-projective and algebraic varieties and also in the category of algebraic spaces. Reviewer: A.Białynicki-Biruła(Warszawa) Cited in 6 Documents MSC: 14L30 Group actions on varieties or schemes (quotients) 14A20 Generalizations (algebraic spaces, stacks) Keywords:principal fiber bundles; actions of algebraic groups; existence problem for products; algebraic spaces PDF BibTeX XML Cite \textit{A. Białynicki-Biruła}, Ann. Inst. Fourier 43, No. 2, 365--368 (1993; Zbl 0779.14015) Full Text: DOI Numdam References: [1] H. HIRONAKA, An example of a non-Kahlerian deformation, Ann. of Math., 75 (1962), 190-208. · Zbl 0107.16001 [2] D. KNUTSON, Algebraic spaces, Lecture Notes in Mathematics, 203, Springer-Verlag, 1971. · Zbl 0221.14001 [3] D. MUMFORD, J. FOGARTY, Geometric invariant theory, 2nd edition, Ergeb. Math. 36, Springer-Verlag, 1982. · Zbl 0504.14008 [4] J.-P. SERRE, Espaces fibrés algébriques in anneaux de Chow et applications, Séminaire Chevalley, E.N.S. Paris, 1958. [5] H. SUMIHIRO, Equivariant completions I, J. Math. Kyoto Univ., 14 (1974), 1-28. · Zbl 0277.14008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.