×

zbMATH — the first resource for mathematics

Optimality conditions for strongly monotone variational inequalities. (English) Zbl 0779.49012
Summary: Necessary conditions for optimal controls have been obtained for strongly monotone variational inequalities by the penalty method, Ekeland’s Variational Principle, and lower-semicontinuity of set-valued mappings. It has been shown that these conditions are easy to apply and can imply some known necessary conditions. They also yield new optimality conditions.

MSC:
49J40 Variational inequalities
49J50 Fréchet and Gateaux differentiability in optimization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aubin JA, Cellina A (1984) Differential Inclusions. Springer-Verlag, New York · Zbl 0538.34007
[2] Baiocchi CP, Capelo A (1984) Variational and Quasi-Variational Inequalities. Wiley, New York · Zbl 0551.49007
[3] Barbu A (1984) Optimal Control of Variational Inequalities. Research Notes in Mathematics, Vol. 100. Pitman, London · Zbl 0574.49005
[4] Barbu A, Tiba D (1990) Optimal control of abstract variational inequalities. Proc Fifth IFAC Symp on Control of Distributed Systems (El Jai A, ed), Perpignan
[5] Berge C (1959) Espaces Topologiques et Fonctions Multivoques. Dunod, Paris · Zbl 0088.14703
[6] Bermudez A, Saguez C (1987) Optimal control of a Signorini problem. SIAM J Control Optim 25:576-580 · Zbl 0617.49011 · doi:10.1137/0325032
[7] Bermudez A, Saguez C (1987) Optimality conditions for optimal control problems of variational inequalities. Lecture Notes in Control and Information Sciences, Vol 97. Springer-Verlag, Berlin, pp 142-153 · Zbl 0617.49011
[8] Bonnans J, Tiba D (1989) Pontryagin’s principle in the control of semilinear elliptic variational inequalities. INRIA Report No 1134 · Zbl 0728.49003
[9] Clarke FH (1983) Optimization and Nonsmooth Analysis. Wiley-Interscience, New York · Zbl 0582.49001
[10] Duvaut G, Lions JL (1973) The Inequalities in Mechanics and Physics. Springer-Verlag, New York
[11] Ekeland I (1974) On the variational principle. J Math Anal Appl 47:324-353 · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[12] Friedman A (1982) Variational Principles and Free Boundary Problems. Wiley, New York · Zbl 0564.49002
[13] Friedman A (1986) Optimal control for variational inequalities. SIAM J Control Optim 24:439-451 · Zbl 0604.49007 · doi:10.1137/0324025
[14] Liu WB, Rubio JE (1990) Optimality conditions for elliptic variational inequalities. Lecture Notes in Control and Information Sciences, Vol. 144. Springer-Verlag, Berlin, pp 156-166
[15] Liu WB, Rubio JE (to appear) Optimal shape design for systems governed by variational inequalities ? III. J Optim Theory Appl 74:273-304 · Zbl 0795.49027
[16] Mignot F (1976) Controle dans les inequations variationnelles elliptiques. J Funct Anal 22:130-185 · Zbl 0364.49003 · doi:10.1016/0022-1236(76)90017-3
[17] Mignot F, Puel JP (1986) Optimal control in some variational inequalities. SIAM J Control Optim 22:467-477
[18] Shi S (1988) Optimal control of strongly monotone variational inequalities. SIAM J Control Optim 26:274-291 · Zbl 0644.49007 · doi:10.1137/0326016
[19] Shi S (1990) Erratum: Optimal control of strongly monotone variational inequalities. SIAM J Control Optim 28:243-249 · Zbl 0692.49007 · doi:10.1137/0328012
[20] Wouk A (1979) A Course of Applied Functional Analysis. Wiley-interscience, New York · Zbl 0407.46001
[21] Yosida K (1965) Functional Analysis. Springer-Verlag, New York · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.