Morton, K. W.; Crumpton, P. I.; Mackenzie, J. A. Cell vertex methods for inviscid and viscous flows. (English) Zbl 0779.76073 Comput. Fluids 22, No. 2-3, 91-102 (1993). The cell vertex formulation of the finite volume method is now proving its worth for both the Navier-Stokes and Euler equations. We begin by reviewing the key advantages of the scheme for the Euler equations, and present some new algorithms for shock recovery and for modifying the update algorithm for cells crossed by recovered shocks. Applications will be shown for flow through a row of turbine blades. However, most attention is now focused on the use of the method for the Navier-Stokes equations. Typical results will be shown to demonstrate the capability of the method to model boundary layers accurately on coarse and distorted meshes, by showing detailed results on a variety of meshes. Error analysis for the method is based on setting the individual cell residuals to zero. Cited in 7 Documents MSC: 76M25 Other numerical methods (fluid mechanics) (MSC2010) 76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics Keywords:error analysis; finite volume method; Euler equations; shock recovery; turbine blades; Navier-Stokes equations; boundary layer PDF BibTeX XML Cite \textit{K. W. Morton} et al., Comput. Fluids 22, No. 2--3, 91--102 (1993; Zbl 0779.76073) Full Text: DOI OpenURL References: [1] Cunge, J. A.; Holly, F. M.; Verwey, A., Practical Aspects of Computational River Hydraulics (1980), Pitman: Pitman London [2] Rudgyard, M. A., The cell vertex method for compressible gas flows, (Ph.D. Thesis (1990), Oxford Univ. Computing Lab: Oxford Univ. Computing Lab 11 Keble Rd, Oxford) · Zbl 0658.76070 [3] Morton, K. W.; Rudgyard, M. A.; Shaw, G. J., Upwind iteration methods for the cell vertex scheme in one dimension, (Technical Report NA91/09 (1991), Oxford Univ. Computing Lab: Oxford Univ. Computing Lab 11 Keble Rd, Oxford), J. Comput. Phys. Submitted to J. Comput. Phys. · Zbl 0811.65070 [4] Mackenzie, J. A., Cell vertex finite volume methods for the solution of the compressible Navier-Stokes equations, (Ph.D. Thesis (1991), Oxford Univ. Computing Lab: Oxford Univ. Computing Lab 11 Keble Rd, Oxford) · Zbl 0847.76070 [5] Mackenzie, J. A.; Morton, K. W., Finite volume solutions of convection-diffusion test problems, (Technical Report NA90/1 (1990), Oxford Univ. Computing Lab: Oxford Univ. Computing Lab 11 Keble Rd, Oxford), Maths Comput. In press · Zbl 0797.76072 [6] Morton, K. W.; Stynes, M., An analysis of the cell vertex method, (Technical Report NA91/07 (1991), Oxford Univ. Computing Lab: Oxford Univ. Computing Lab 11 Keble Rd, Oxford), \(M^2AN\). Submitted to \(M^2\) AN · Zbl 0822.65078 [7] Morton, K. W.; Rudgyard, M. A., (Proc. GAMNI/SMAI IMA Conf. on Computational Aeronautical Fluid Dynamics. Proc. GAMNI/SMAI IMA Conf. on Computational Aeronautical Fluid Dynamics, Antibes (1989)), In press · Zbl 0811.76063 [8] Donnelly, S., Shock fitting and the UNSFLO code for turbomachinery flows, (Ph.D. Thesis (1992), Oxford Univ. Computing Lab: Oxford Univ. Computing Lab 11 Keble Rd, Oxford) [9] Crumpton, P. I.; Mackenzie, J. A.; Morton, K. W.; Rudgyard, M. A.; Shaw, G. J., Cell vertex multigrid methods for the compressible Navier Stokes equations, (Morton, K. W., Proc. 12th Int. Conf. on Numerical Methods in Fluid Dynamics. Proc. 12th Int. Conf. on Numerical Methods in Fluid Dynamics, 1990. Proc. 12th Int. Conf. on Numerical Methods in Fluid Dynamics. Proc. 12th Int. Conf. on Numerical Methods in Fluid Dynamics, 1990, Lecture Notes in Physics, Vol. 371 (1990), Springer-Verlag: Springer-Verlag Berlin), 243-247 [10] Crumpton, P. I.; Mackenzie, J. A.; Morton, K. W., Cell vertex algorithms for the compressible Navier-Stokes equations, (Technical Report NA91/12. Technical Report NA91/12, J. Comput. Phys. (1991), Oxford Univ. Computing Lab: Oxford Univ. Computing Lab 11 Keble Rd, Oxford), In press · Zbl 0790.76062 [11] Morton, K. W.; Paisley, M. F., A finite volume scheme with shock fitting for the steady Euler equations, J. Comput. Phys., 80, 168 (1989) · Zbl 0656.76059 [12] Süli, E., The accuracy of finite volume methods on quadrilateral meshes, Maths Comput., 59, 359 (1992) · Zbl 0767.65072 [13] Morton, K. W., Finite volume methods and their analysis, (Whiteman, J. R., The Mathematics of Finite elements and Applications VII; MAFELAP 1990 (1991), Academic Press: Academic Press New York), 189-214 · Zbl 0797.76072 [14] Morton, K. W.; Rudgyard, M. A., Shock recovery and the cell vertex scheme for the steady Euler equations, (Dwoyer, D. L.; Hussaini, M. Y.; Voigt, R. G., Proc. 11th Int. Conf. on Numerical Methods in Fluid dynamics. Proc. 11th Int. Conf. on Numerical Methods in Fluid dynamics, 1988. Proc. 11th Int. Conf. on Numerical Methods in Fluid dynamics. Proc. 11th Int. Conf. on Numerical Methods in Fluid dynamics, 1988, Lecture Notes in Physics, Vol. 323 (1989), Springer-Verlag: Springer-Verlag Berlin), 424-428 [15] Mavriplis, D. J.; Jameson, A.; Martinelli, L., Multigrid solution of the Navier-Stokes equations on triangular meshes, AIAA Paper 89-0120 (1989) [16] Martinelli, L., Calculations of viscous flows with a multigrid method, (Ph.D. Thesis (1987), Department of Mechanical and Aerospace Engineering, Princeton Univ: Department of Mechanical and Aerospace Engineering, Princeton Univ Princeton, NJ) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.