Modeling of permanent magnet linear generator and state estimation based on sliding mode observer: a wave energy system application. (English) Zbl 07790655

Summary: This paper synopsis a new solution for Permanent Magnets Linear Generator (PMLG) state estimation subject to bounded uncertainty. Therefore, a PMLG modeling method is presented based on an equivalent circuit, wherein a mathematical model of the generator adapted to wave energy conversion is established. Then, using the Linear Matrix Inequality (LMI) optimization and a Lyapunov function, this system’s Sliding Mode Observer (SMO) design method is developed. Consequently, the proposed observer can give a robust state estimation. At last, numerical examples with and without uncertainty are included to exemplify the effectiveness and applicability of the suggested approaches.


93B07 Observability


LMI toolbox
Full Text: DOI


[1] Ackermann, T., Wind Power in Power Systems., John Wiley and Sons, 2012
[2] Brooke, J., Wave Energy Conversion., Elsevier, 2003
[3] Calabrese, D.; Tricarico, G.; Brescia, E.; Cascella, G. L.; Monopoli, V. G.; Cupertino, F., Variable structure control of a small ducted wind turbine in the whole wind speed range using a Luenberger observer., MDPI, Energies 13 (2020), 4647
[4] Chen, W.; Saif, M., Unknown input observer design for a class of nonlinear systems: an LMI approach., Amer. Control Confer. (2006), 5
[5] Clément, A.; McCullen, P.; Falcão, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini, S.; others, Wave energy in Europe: current status and perspectives., Renewable Sustainable Energy Rev. 6 (2002), 405-431
[6] Falcao, A. F. de, Wave energy utilization: A review of the technologies., Elsevier 14 (2010), 899-918
[7] Farrok, O.; Islam, Md R.; Sheikh, Md R. I.; Guo, Y.; Zhu, J.; Jianguo; Lei, G., Oceanic wave energy conversion by a novel permanent magnet linear generator capable of preventing demagnetization., IEEE Trans. Industry Appl. 54 (2018), 6005-6014
[8] Foteinis, S., Wave energy converters in low energy seas: Current state and opportunities., Elsevier 162 (2022), 112448
[9] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M., LMI Control Toolbox, the MathWorks Inc, Natick., MA 1995
[10] Gao, Z.; Liu, X., An overview on fault diagnosis, prognosis and resilient control for wind turbine systems., MDPI J., Processes 9 (2021), 300
[11] Jayalakshmi, N. S.; Gaonkar, D. N.; Kumar, K. S. K., Dynamic modeling and performance analysis of grid connected PMSG based variable speed wind turbines with simple power conditioning system., IEEE Int. Confer. Power Electron. Drives Energy Systems (PEDES) (2012), 1-5
[12] Luenberger, D., An introduction to observers., IEEE Trans. Automat. Control 16 (1971), 596-602
[13] Mouni, E.; Tnani, S.; Champenois, G., Synchronous generator modelling and parameters estimation using least squares method., Simul- Modell. Practice Theory 16 (2008), 678-689
[14] Odgaard, P. F.; Stoustrup, J., Unknown input observer based detection of sensor faults in a wind turbine., IEEE Int. Confer. Control Appl. (2010), 310-315
[15] Polinder, H.; Mueller, M. A.; Scuotto, M.; Prado, M. G. de Sousa, Linear generator systems for wave energy conversion., In: Proc. 7th European Wave and Tidal Energy Conference, Porto 2007, pp. 11-14
[16] Remon, D.; Cantarellas, A. M.; Rodriguez, P., Equivalent model of large-scale synchronous photovoltaic power plants., IEEE Trans. Industry Appl. 52 (2016), 5029-5040
[17] Sename, O., New trends in design of observers for time-delay systems., Kybernetika 37 (2001), 427-458 · Zbl 1265.93108
[18] Simões, M. G.; Farret, F. A., Modeling and Analysis with Induction Generators., CRC Press 2014
[19] Tagliafierro, B.; Martínez-Estévez, I.; Domínguez, J.; Crespo, A. J. C.; Göteman, M.; Engström, J.; Gómez-Gesteira, M., A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions., Appl. Energy, Elsevier 311 (2022), 118629
[20] Trapanese, M.; Boscaino, V.; Cipriani, G.; Curto, D.; Dio, V. Di; Franzitta, V., A permanent magnet linear generator for the enhancement of the reliability of a wave energy conversion system., IEEE Trans. Industrial Electron. 66 (2018), 4934-4944
[21] Wang, Z.; Shen, Y.; Zhang, X.; Wang, Q., Observer design for discrete-time descriptor systems: An LMI approach., Systems Control Lett. 61 (2012), 683-687 · Zbl 1250.93038
[22] Wang, J.; Wang, F.; Wang, X.; Yu, L., Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system., Kybernetika 55 (2019), 586-603 · Zbl 1449.93024
[23] Wang, J.; Wang, F.; Wang, X.; Yu, L., Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system., Kybernetika 55 (2019), 586-603 · Zbl 1449.93024
[24] Zhang, Y.; Li, G., Non-causal linear optimal control of wave energy converters with enhanced robustness by sliding mode control., IEEE Trans. Sustainable Energy 11 (2019), 2201-2209
[25] Zhang, Y.; Li, G.; Zeng, T., Wave excitation force estimation for wave energy converters using adaptive sliding mode observer., IEEE Amer. Control Confer. (ACC) (2019), 4803-4808
[26] Zhang, Y.; Stansby, P.; Li, G., Non-causal linear optimal control with adaptive sliding mode observer for multi-body wave energy converters., IEEE Trans. Sustainable Energy 12 (2020), 568-577
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.