Nicoleau, François; Robert, Didier Quantum scattering theory for long and short range perturbations of the magnetic field. (Théorie de la diffusion quantique pour des perturbations à longue et courte portée du champ magnétique.) (French) Zbl 0780.35091 Ann. Fac. Sci. Toulouse, V. Sér., Math. 12, No. 2, 185-194 (1991). Summary: The authors study perturbations of the positive Laplace operator, \(- \Delta\), in \(\mathbb{R}^ n\) of the form: \[ H_{A,V}= \sum(D_ j-A_ j(x))^ 2+V(x). \] In case when \(V\) is short range, \(A(x)=\sum A_ j(x)dx_ j\) long range but the two form \(dA\) being short range, they compare the usual Moeller wave operators and the modified wave operators introduced by Isozaki-Kitada. They recover a result of Loss-Thaller on the completeness of the wave operators for the pair \((H_{A,V},- \Delta)\). Cited in 4 Documents MSC: 35Q40 PDEs in connection with quantum mechanics 35P25 Scattering theory for PDEs 35J10 Schrödinger operator, Schrödinger equation 81U05 \(2\)-body potential quantum scattering theory Keywords:perturbations of the positive Laplace operator; Moeller wave operators; modified wave operators PDF BibTeX XML Cite \textit{F. Nicoleau} and \textit{D. Robert}, Ann. Fac. Sci. Toulouse, Math. (5) 12, No. 2, 185--194 (1991; Zbl 0780.35091) Full Text: DOI Numdam EuDML References: [1] Beals, R.) .- A general calculus of pseudodifferential operators, Duke Math. J.42 (1975) pp. 1-42. · Zbl 0343.35078 [2] Dollard, J.D.) .- Quantum mechanical scattering theory for short range and Coulomb interactions, Rocky Mountain J.1 (1971) pp. 5-88. · Zbl 0226.35074 [3] Enss, V.) . - Long-range scattering of two-and three body quantum systems, Actes des Journées Équations aux Dérivées Partielles, Saint-Jean de Monts (1989) pp. 1-31 · Zbl 0734.35069 [4] Gérard, C.) et Martinez, A.) .- Prolongement méromorphe de la matrice de scattering pour des problèmes à 2 corps à longue portée, Ann. Inst. Henri Poincaré, 51, n° 1 (1989) pp. 81-110. · Zbl 0711.35097 [5] Hörmander, L.) . - The analysis of linear partial differential operators, Tomes 1 à 4, Springer-Verlag. · Zbl 0601.35001 [6] Isozaki, H.) and Kitada, H.) . - Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo, Sect. IA, 32 (1985) pp. 77-104. · Zbl 0582.35036 [7] Loss, M.) and Thaller, B.) .- Scattering of particles by long-range magnetic fields, Annals of physics, 176 (1987) pp. 159-180. · Zbl 0646.35074 [8] Nicoleau, F.) .- Théorie de la diffusion pour l’opérateur de Schrödinger en présence d’un champ magnétique, Thèse de doctorat de l’Université de Rennes I (1991). [9] Perry, P.A.) .- Scattering theory by the Enss method, Mathematical Reports Series, vol. 1, part 1, Hardwood Acad. Publishers (1983). · Zbl 0529.35004 [10] Reed, M.) and Simon, B.) .- Methods of Modern Mathematical Physics Tomes 1 à 4, Academic Press (1972). · Zbl 0401.47001 [11] Robert, D.) . - Asymptotique de le phase de diffusion à haute énergie pour des perturbations du second ordre du Laplacien, À paraître au Annales de l’E.N.S. · Zbl 0801.35100 [12] Robert, D.) . - On Scattering theory for long range perturbations of Laplace operators, Conférence en l’honneur de S. Agmon, juin 1990; à paraître dans le Journal d’Analyse Mathématique. · Zbl 0813.35072 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.