Olla, S.; Varadhan, S. R. S.; Yau, H. T. Hydrodynamical limit for a Hamiltonian system with weak noise. (English) Zbl 0781.60101 Commun. Math. Phys. 155, No. 3, 523-560 (1993). Summary: Starting from a general Hamiltonian system with superstable pairwise potential, we construct a stochastic dynamics by adding a noise term which exchanges the momenta of nearby particles. We prove that, in the scaling limit, the time conserved quantities, energy, momenta and density, satisfy the Euler equation of conservation laws up to a fixed time \(t\) provided that the Euler equation has a smooth solution with a given initial data up to time \(t\). The strength of the noise term is chosen to be very small (but nonvanishing) so that it disappears in the scaling limit. Cited in 4 ReviewsCited in 62 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 82B30 Statistical thermodynamics Keywords:Hamiltonian system with superstable pairwise potential; Euler equation; conservation laws; scaling limit × Cite Format Result Cite Review PDF Full Text: DOI References: [1] [CLY] Conlon, J.G., Lieb, E.H., Yau, H.T.: The Coulomb gas at low temperature and low density. Commun. Math. Phys.125, 153–218 (1989) · Zbl 0682.76066 · doi:10.1007/BF01217775 [2] [DeM] DeMasi, A., Ianiro, N., Pellegrinotti, A., Presutti, E.: A survey of the hydrodynamical behaviro of many-particle systems. In: Nonequilibrium phenomena. II. From stochastic to hydrodynamics. Lebowitz, J.L., Montroll, E.W. (eds.), pp. 123–234, Amsterdam: North-Holland, 1984 [3] [Sp] Spohn, H.: Large Dynamics of interacting particles. Berlin. Heidelberg, New York: Springer 1991 · Zbl 0742.76002 [4] [Si] Sinai, Ya.G.: Dynamics of local equilibrium Gibbs distributions and Euler equations. The one-dimensional case. Selecta Math. Sov.7(3), 279–289 (1988) [5] [BDS] Boldrighini, C., Dobrushin, R.L., Suhov, Yu.M.: One-dimensional hard rod caricatures of hydrodynamics. J. Stat. Phys.31, 577–616 (1983) · doi:10.1007/BF01019499 [6] [Y] Yau, H.T.: Relative entropy and the hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys.22, 63–80 (1991) · Zbl 0725.60120 · doi:10.1007/BF00400379 [7] [GPV] Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys.118, 31–53 (1988) · Zbl 0652.60107 · doi:10.1007/BF01218476 [8] [V] Varadhan, S.R.S.: Scaling limits for interacting diffusions. Commun. Math. Phys.135, 313–353 (1991) · Zbl 0725.60085 · doi:10.1007/BF02098046 [9] [O] Olla, S.: Large deviations for Gibbs random fields. Prob. Theory Related Fields77, 343–357 (1988) · Zbl 0621.60031 · doi:10.1007/BF00319293 [10] [OV] Olla, S., Varadhan, S.R.S.: Scaling limit for interacting Ornstein-Uhlenbeck proceses. Commun. Math. Phys.135, 355–378 (1991) · Zbl 0725.60086 · doi:10.1007/BF02098047 [11] [Re] Rezakhanlou, F.: Hydrodynamic limit for a system with finite range interations. Commun. Math. Phys.129, 445–480 (1990) · Zbl 0702.76121 · doi:10.1007/BF02097101 [12] [R] Ruelle D.: Statistical Mechanics. Reading, MA: Benjamin 1969 · Zbl 0177.57301 [13] [V1] Varandhan, S.R.S.: Large deviation and applications. Philadelphia: SIAM 1984 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.