×

zbMATH — the first resource for mathematics

Wavelets and their applications. (English) Zbl 0782.00087
Boston, MA etc.: Jones and Bartlett Publishers. xiii, 474 p. (1992).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Vetterli, Martin, Wavelets and filter banks for discrete-time signal processing, 17-52 [Zbl 0792.94002]
Feauveau, Jean-Christophe, Wavelets for the quincunx pyramid, 53-66 [Zbl 0792.94003]
Mallat, Stephane; Zhong, Sifen, Wavelet transform maxima and multiscale edges, 67-104 [Zbl 0804.68158]
Cohen, Albert, Wavelets and digital signal processing, 105-121 [Zbl 0804.42017]
Tchamitchian, Ph.; Torrésani, B., Ridge and skeleton extraction from the wavelet transform, 123-151 [Zbl 0798.94006]
Coifman, Ronald R.; Meyer, Yves; Wickerhauser, Victor, Wavelet analysis and signal processing, 153-178 [Zbl 0792.94004]
Beylkin, G.; Coifman, R.; Rokhlin, V., Wavelets in numerical analysis, 181-210 [Zbl 0798.65126]
Alpert, Bradley K., Construction of simple multiscale bases for fast matrix operations, 211-226 [Zbl 0804.65048]
Liandrat, J.; Perrier, V.; Tchamitchian, Ph., Numerical resolution of nonlinear partial equations using the wavelet approach, 227-238 [Zbl 0802.65100]
Arneodo, A.; Argoul, F.; Muzy, J. F.; Pouligny, B.; Freysz, E., The optical wavelet transform, 241-273 [Zbl 0875.42005]
Farge, Marie, The continuous wavelet transform of two-dimensional turbulent flows, 275-302 [Zbl 0805.76027]
Paul, T.; Seip, K., Wavelets and quantum mechanics, 303-321 [Zbl 0796.35140]
Battle, Guy, Wavelets: A renormalization group point of view, 323-349 [Zbl 0803.42018]
Feichtinger, H. G.; Gröchenig, K., Non-orthogonal wavelet and Gabor expansions, and group representations, 353-375 [Zbl 0832.42022]
Frazier, Michael; Jawerth, Björn, Applications of the \(\varphi\) and wavelet transforms to the theory of function spaces, 377-417 [Zbl 0827.46036]
Chui, Charles K., On cardinal spline-wavelets, 419-438 [Zbl 0798.42016]
Auscher, P., Wavelet bases for \(L^ 2(\mathbb{R})\) with rational dilation factor, 439-451 [Zbl 0798.42018]
Coifman, R. R.; Meyer, Y.; Wickerhauser, V., Size properties of wavelet-packets, 453-470 [Zbl 0822.42019]

MSC:
00B25 Proceedings of conferences of miscellaneous specific interest
46-06 Proceedings, conferences, collections, etc. pertaining to functional analysis
42Cxx Nontrigonometric harmonic analysis
Keywords:
Wavelets
PDF BibTeX XML Cite