×

zbMATH — the first resource for mathematics

Foliations in \(\mathbb{C} P(n)\): About hyperbolic holonomy for minimal exceptional sets. (Feuilletages de \(\mathbf C\mathbf P(n)\): De l’holonomie hyperbolique pour les minimaux exceptionnels.) (French) Zbl 0782.32023
Does there exist a holomorphic foliation \({\mathcal F}\) of codimension \(l\) in \(\mathbb{C} P(n)\) with a minimal exceptional set, i.e. with a leaf \(L\) whose closure \(\overline L\) does not contain any singular point of \({\mathcal F}\)? The answer is not known. However, the authors show: given a holomorphic foliation \({\mathcal F}\) of codimension \(l\) in \(\mathbb{C} P(n)\) with a leaf \(L\) such that \(\overline L\) is disjoint from the singular set of \({\mathcal F}\), there exists a loop in a leaf contained in \(\overline L\) with contracting hyperbolic holonomy.

MSC:
32S65 Singularities of holomorphic vector fields and foliations
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] C. Camacho, A. Lins, P. Sad, Minimal sets of foliations on complex projective spaces,Publ. Math. I.H.E.S.,68 (1988), 187–203. · Zbl 0682.57012
[2] R. Langevin, H. Rosenberg, Quand deux sous-variétés sont forcées par leur géométrie à se rencontrer (à paraître auBulletin de la S.M.F.).
[3] J. F. Mattéi, R. Moussu, Holonomie et intégrales premières,Ann. Sci. Ec. Norm. Sup., Série 4, 13 (1980), 469–523.
[4] R. Narasimhan, Introduction to the theory of analytic spaces,Springer Lect. Notes in Math., no 25 (1966). · Zbl 0168.06003
[5] R. Poincaré, Mémoires sur les courbes définies par une équation différentielle,J. Math. Pures et Appl. (Série 3), 7 (1881), 375–422. · JFM 13.0591.01
[6] B. Raymond,Ensembles de Cantor et feuilletages, thèse de doctorat d’Etat, Paris XI (Orsay), 2 juin 1976.
[7] R. Sacksteder, Foliations and pseudo-groups,American Journal of Math.,87 (1965), 79–102. · Zbl 0136.20903 · doi:10.2307/2373226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.