zbMATH — the first resource for mathematics

Linear Gale transforms and Gelfand-Kapranov-Zelevinskij decompositions. (English) Zbl 0782.52006
Summary: In the convex-geometric setting of what we call linear Gale transforms and convex polyhedral cone decompositions, we generalize and reformulate results on (1) the secondary polytope of a convex polytope considered by Gelfand, Kapranov and Zelevinskij in connection with the discriminants of projective toric varieties, as well as (2) the wall geometry of fans considered by Reid in connection with Mori’s birational geometry in the particular case of projective toric varieties.

52B35 Gale and other diagrams
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14M15 Grassmannians, Schubert varieties, flag manifolds
Full Text: DOI
[1] LJ BILLERA, P FILLIMAN AND B STURMFELS, Constructions and complexity of secondary polytopes, Adv in Math 83(1990), 155-179. · Zbl 0714.52004 · doi:10.1016/0001-8708(90)90077-Z
[2] J. FINE, Onvarieties isomorphic in codimension one to torus embeddings, Duke Math J 58 (1989), 79-88 · Zbl 0708.14035 · doi:10.1215/S0012-7094-89-05805-5
[3] J FINE, Another proof of Sumihiro’s theorem on torus embeddings, to appea · Zbl 0786.14008 · doi:10.1215/S0012-7094-93-06912-8
[4] I M GELFAND, A V ZELEVINSKIJ AND M M KAPRANOV, Projectively dual varieties and hy perdeterminants, Dokl Akad Nauk SSSR 305, No 6 (1989), 1294-1298; Soviet Math Dokl 39, No 2 (1989), 385-389
[5] I M GELFAND, A V ZELEVINSKIJ AND M M KAPRANOV, ^-discriminants and Cayley-Koszu complexes, Dokl Akad Nauk SSSR 307, No 6 (1989), 1307-1311; Soviet Math Dokl 40, No 1 (1990), 239-243
[6] I M GELFAND, A V ZELEVINSKIJ AND M M KAPRANOV, Newton polyhedra of principa ^-determinants, Dokl Akad Nauk SSSR 308, No 1(1989), 20-23; Soviet Math Dokl 40, No 2 (1990), 278-281
[7] I M GELFAND, A V ZELEVINSKIJ AND M M KAPRANOV, Hypergeometric functions and tora manifolds, Funkcional Anal i Prilozen 23, No 2 (1989), 12-26; Functional Anal Appl 23, No 2 (1989), 94^106
[8] I M GELFAND, A V ZELEVINSKIJ AND M M KAPRANOV, On discriminants of polynomials of severa variables, Funkcional Anal i Prilozen 24, No 1(1990), 1-4
[9] I M GELFAND, A V ZELEVINSKIJ AND M M KAPRANOV, General theory of^-discriminants, preprint, 1989; English translation by E Horikawa, 1990
[10] J E GOODMAN AND J PACH, Cell decomposition ofpolytopes bybending, to appea
[11] P MCMULLEN, Transforms, diagrams andrepresentations, in Contributions to Geometry, Proc o the Geometry Symp in Siegen 1978 (J Tolke and J M Wills, eds), Birkhauser, Basel, Boston, Stuttgart, 1979, 92-130 · Zbl 0445.52006
[12] T ODA, Lectures on Torus Embeddings and Applications (Based on Joint Work with Katsuya Miyake), Tata Inst of Fund Research 58, Springer-Verlag, Berlin, Heidelberg, New York, 1978 · Zbl 0417.14043
[13] T ODA, Convex Bodies and Algebraic Geometry-An Introduction tothe Theory of Toric Varieties, Ergebnisse der Math (3)15, Springer-Verlag, Berlin, Heidelberg, NewYork, London, Paris, Tokyo, 1988 · Zbl 0628.52002 · eudml:203658
[14] T ODA, Geometry of toric varieties, in Proc of the Hyderabad Conf on Algebraic Groups, December, 1989 (S Ramanan, ed), Manoj Prakashan, Madras, India, · Zbl 0785.14031
[15] M REID, Decomposition of toric morphisms, in Arithmetic and Geometry, papers dedicated to I Shafarevich on theoccasion of his 60th birthday (M Artin and J Tate, eds), vol II, Geometry, Progress in Math 36, Birkhauser, Boston, Basel, Stuttgart, 1983, 395-418 · Zbl 0571.14020
[16] G C SHEPHARD, Diagrams for positive bases, J London Math Soc 4 (1971), 165-17 · Zbl 0225.15004 · doi:10.1112/jlms/s2-4.1.165
[17] R STANLEY, Decompositions of rational convex polytopes, Ann Discrete Math 6 (1980), 333-34 · Zbl 0812.52012 · doi:10.1016/S0167-5060(08)70717-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.