Milka, Zdeněk Finite element solution of a stationary heat conduction equation with the radiation boundary condition. (English) Zbl 0782.65130 Appl. Math., Praha 38, No. 1, 67-79 (1993). There exist many different methods of treating analytically and numerically the Stefan-Boltzmann boundary condition appearing in stationary heat conduction problems [e.g. T. Y. Na, Computational methods in engineering boundary value problems (1979; Zbl 0456.76002)]. Slightly modifying a variational approach briefly described by B. A. Szabó and I. Babuška [Finite element analysis, John Wiley & Sons, New York (1991)], the author examines here the associated finite element approximations. Reviewer: H.P.Dikshit (New Delhi) Cited in 4 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 35J25 Boundary value problems for second-order elliptic equations Keywords:Stefan-Boltzmann boundary condition; stationary heat conduction; finite element Citations:Zbl 0456.76002 PDF BibTeX XML Cite \textit{Z. Milka}, Appl. Math., Praha 38, No. 1, 67--79 (1993; Zbl 0782.65130) Full Text: EuDML OpenURL References: [1] Carrier G. F., Pearson C. E.: Partial differential equations. Theory and Technique, Academic Press, London, 1976. · Zbl 0323.35001 [2] Ciarlet P. G.: Optimisation, théorie et algorithmes. Dunod, Paris, 1971. [3] Delfour M. C., Payre G., Zolésio J. P.: Approximation of nonlinear problems associated with radiating bodies in the space. SIAM J. Numer. Anal. 24 (1987), 1077-1094. · Zbl 0641.65092 [4] Doktor P.: On the density of smooth functions in certain subspaces of Sobolev spaces. Comment. Math. Univ. Carolin. 14 (1973), 609-622. · Zbl 0268.46036 [5] Glowinski R.: Lectures on numerical methods for nonlinear variational problems. Tata Inst. of Fundamental Research, Bombay, 1980. · Zbl 0456.65035 [6] Hottel A. C., Sarofim A.F.: Radiative transport. McGraw Hill, New York, 1965. [7] Jarušek J.: On the regularity of solutions of a thermoelastic system under noncontinuous heating regimes. Apl. Math 35 (1990), 426-450. · Zbl 0754.73021 [8] Křížek M.: On semiregular families of triangulations und linear interpolation. Appl. Math. 36 (1991), 223-232. · Zbl 0728.41003 [9] Křížek M., Neitaanmaki P.: Finite element approximation of variational problems and applications. Longam, Harlow, 1990. [10] Na T. Y.: Computational methods in engineering boundary value problems. Academic Press, London, 1979, pp. 231,232,279. · Zbl 0456.76002 [11] Nečas J.: Les méthodes directes en théorie des eqations elliptiques. Academia, Prague, 1967. [12] Ohayon R., Gorge Y.: Variational analysis of a non-linear non-homogenous heat conduction problem. Proc. Conf. Numerical Methods for Non-linar Problems, Swansea 1980, Pineridge Press, pp. 673-681. [13] Olmstead W. E.: Temperature distribution in a convex solid with a nonlinera radiation boundary condition. J. Math. Mech. 15 (1966), 899-907. · Zbl 0145.36004 [14] Szabó B. A., Babuška I.: Finite element analysis. John Willey & Sons, New York, 1991. · Zbl 0792.73003 [15] Vujanovič B., Djukič. D.: On the variational principle of Hamilton’s typr for nonlinear heat transfer problem. Internat. J. Heat. Mass Transfer (1972), 1111-1123. [16] Vujanovič B., Strauss A. M.: Heat transfer with nonlinear boundary conditions via a variational principle. AIAA (1971), 327-330. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.