Nicaise, Serge About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. I: Regularity of the solutions. (English) Zbl 0782.73041 Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 19, No. 3, 327-361 (1992). The first part of the series of two papers is devoted to the studies of the regularity of the solutions of non-homogeneous mixed boundary value problem for the Lamé system in the polyhedral domain in \(\mathbb{R}^ 3\). Even if the transformation to the homogeneous boundary conditions by means of the trace theorem is impossible (the racracked domains are allowed), the results concerning vertex and edge singularities are reestablished, but only with a regularity \(H^{3/2+\varepsilon}\) (for some \(\varepsilon>0)\) of a regular part. Then, the sufficient geometrical conditions on the domain, which ensure the \(H^{3/2+\varepsilon}\)-regularity for the weak solutions, are given.The author applies these new theoretical results to the solution of a problem coupling the linear elasticity system in the unit cube in \(\mathbb{R}^ 3\) with a plane racrack and the plate equation on a plane domain. Reviewer: O.John (Praha) Cited in 2 ReviewsCited in 32 Documents MSC: 74K20 Plates 74B99 Elastic materials 74H99 Dynamical problems in solid mechanics 35Q72 Other PDE from mechanics (MSC2000) Keywords:regularity; trace theorem; vertex and edge singularities; weak solutions; plane crack PDFBibTeX XMLCite \textit{S. Nicaise}, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 19, No. 3, 327--361 (1992; Zbl 0782.73041) Full Text: Numdam EuDML References: [1] H. Blum - R. Rannacher , On the boundary value problem of the biharmonic operator on domains with angular comers , Math. Methods Appl. Sci. , 2 , 1980 , pp. 556 - 581 . MR 595625 | Zbl 0445.35023 · Zbl 0445.35023 · doi:10.1002/mma.1670020416 [2] P.G. Ciarlet - H. Le Dret - R. Nzengwa , Junctions between three-dimension and two-dimensional linearly elastic structures , J. Math. Pures Appl. , 68 , 1989 , pp. 261 - 295 . MR 1025905 | Zbl 0661.73013 · Zbl 0661.73013 [3] M. Dauge , Elliptic boundary value problems on comer domains , Lecture Notes in Math. , 1341 , Springer-Verlag , 1988 . MR 961439 | Zbl 0668.35001 · Zbl 0668.35001 · doi:10.1007/BFb0086682 [4] M. Dauge , Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with comers, I: Linearized equations , SIAM J. Math. Anal. , 20 , 1989 , pp. 74 - 97 . MR 977489 | Zbl 0681.35071 · Zbl 0681.35071 · doi:10.1137/0520006 [5] P. Grisvard , Théorèmes de traces relatifs à un polyèdre , C.R. Acad. Sci. Paris , 278 , série A , 1974 , pp. 1581 - 1583 . MR 352963 | Zbl 0296.46038 · Zbl 0296.46038 [6] P. Grisvard , Elliptic problems in nonsmooth domains , Monographs Stud. Math. , 24 , Pitman , 1985 . MR 775683 | Zbl 0695.35060 · Zbl 0695.35060 [7] P. Grisvard , Problèmes aux limites dans les polygones, mode d’emploi , Bulletin de la direction des études et recherches de l’E.D.F. , série C , 1 , 1986 , pp. 21 - 59 . MR 840970 | Zbl 0623.35031 · Zbl 0623.35031 [8] P. Grisvard , Contrôlabilité exacte des solutions de l’équation des ondes en présence de singularités , J. Math. Pures Appl. , 68 , 1989 , pp. 215 - 259 . MR 1010769 | Zbl 0683.49012 · Zbl 0683.49012 [9] P. Grisvard , Singularités en élasticité , Arch. Rational Mech. Anal. , 107 , 1989 , pp. 157 - 180 . MR 996909 | Zbl 0706.73013 · Zbl 0706.73013 · doi:10.1007/BF00286498 [10] V.A. Kondratiev , Boundary value problems for elliptic equations in domains with conical or angular points , Trans. Moscow Math. Soc. , 16 , 1967 , pp. 227 - 313 . MR 226187 | Zbl 0194.13405 · Zbl 0194.13405 [11] V.A. Kozlov - V.G. Maz’ya , Spectral properties of the operator bundles generated by elliptic boundary value problems in a cone , Functional Anal. Appl. 22 , 1988 , pp. 114 - 121 . MR 947604 | Zbl 0672.35050 · Zbl 0672.35050 · doi:10.1007/BF01077601 [12] V.A. Kozlov - V.G. Maz’ya - C. Schwab , On the first boundary value problem of 3-D elasticity on conical domains , Preprint University of Maryland , 1989 . [13] J.-L. Lions , Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués , tome 1 , RMA 8 , Masson , 1988 . MR 953547 | Zbl 0653.93002 · Zbl 0653.93002 [14] R. Lozi , Résultats numériques de régularité du problème de Stokes et du laplacien itéré dans un polygone , RAIRO, Modél. Math. Anal. Numér. , 12 , 1978 , pp. 267 - 282 . Numdam | MR 509976 | Zbl 0385.65025 · Zbl 0385.65025 [15] V.G. Maz’ya - B.A. Plamenevskii , Estimates in Lp and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary , Amer. Math. Soc. Transl. ( 2 ), 123 , 1984 , pp. 1 - 56 . Zbl 0554.35035 · Zbl 0554.35035 [16] V.G. Maz’ya - B.A. Plamenevskii , On properties of solutions of three-dimensional problems of elasticity theory and hydrodynamics in domains with isolated singular points , Amer. Math. Soc. Transl. ( 2 ), 123 , 1984 , pp. 109 - 124 . Zbl 0597.73027 · Zbl 0597.73027 [17] M.T. Niane , Contrôlabilité exacte de l’équation des plaques vibrantes dans un polygone , C.R. Acad. Sci. Paris, Sér. I Math. , 307 , 1988 , pp. 517 - 521 . MR 966254 | Zbl 0661.73034 · Zbl 0661.73034 [18] S. Nicaise , Polygonal interface problems for the biharmonic operator , to appear. MR 1257586 · Zbl 0820.35041 [19] S. Nicaise , Exact controllability of a pluridimensional coupled problem , Revista Matematica de la Universidad Complutense de Madrid , to appear. MR 1062921 | Zbl 0760.35012 · Zbl 0760.35012 [20] T. Von Petersdorff , Randwertprobleme der Elastizitätstheorie für polyeder-Singularitäten und approximation mit randelementmethoden , Thesis, Darmstadt (FRG) , 1989 . Zbl 0709.73009 · Zbl 0709.73009 [21] A.M. Sändig - U. Richter - R. Sändig , The regularity of boundary value problem for the Lamé equations in a polygonal domain , Rostock. Math. Kolloq. , 36 , 1989 , p. 21 - 50 . MR 1006837 | Zbl 0674.35024 · Zbl 0674.35024 [22] J.B. Seif , On the Green’s function for the biharmonic equation in an infinite wedge , Trans. Amer. Math. Soc. , 182 , 1973 , pp. 241 - 260 . MR 325989 | Zbl 0271.31005 · Zbl 0271.31005 · doi:10.2307/1996533 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.