Flammant, Lucas The directed spanning forest in the hyperbolic space. (English) Zbl 1536.60013 Ann. Appl. Probab. 34, No. 1A, 46-102 (2024). Summary: The Euclidean directed spanning forest (DSF) is a random forest in \(\mathbb{R}^{d}\) introduced by F. Baccelli and C. Bordenave in [Ann. Appl. Probab. 17, No. 1, 305–359 (2007; Zbl 1136.60007)] and we introduce and study here the analogous tree in the hyperbolic space. The topological properties of the Euclidean DSF have been stated for \(d = 2\) and conjectured for \(d \geq 3\) (see further): it should be a tree for \(d \in \{2, 3\}\) and a countable union of disjoint trees for \(d \geq 4\). Moreover, it should not contain bi-infinite branches whatever the dimension \(d\). In this paper, we construct the hyperbolic directed spanning forest (HDSF) and we give a complete description of its topological properties, which are radically different from the Euclidean case. Indeed, for any dimension, the hyperbolic DSF is a tree containing infinitely many bi-infinite branches, whose asymptotic directions are investigated. The strategy of our proofs consists in exploiting the mass transport principle, which is adapted to take advantage of the invariance by isometries. Using appropriate mass transports is the key to carry over the hyperbolic setting ideas developed in percolation and for spanning forests. This strategy provides an upper-bound for horizontal fluctuations of trajectories, which is the key point of the proofs. To obtain the latter, we exploit the representation of the forest in the hyperbolic half space. Cited in 1 Document MSC: 60D05 Geometric probability and stochastic geometry 60K35 Interacting random processes; statistical mechanics type models; percolation theory 82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics 51M10 Hyperbolic and elliptic geometries (general) and generalizations 60G55 Point processes (e.g., Poisson, Cox, Hawkes processes) Keywords:continuum percolation; hyperbolic space; stochastic geometry; random geometric tree; hyperbolic directed spanning forest; mass transport principle; Poisson point processes Citations:Zbl 1136.60007 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] ATHREYA, S., ROY, R. and SARKAR, A. (2008). Random directed trees and forest-drainage networks with dependence. Electron. J. Probab. 13 2160-2189. Digital Object Identifier: 10.1214/EJP.v13-580 Google Scholar: Lookup Link MathSciNet: MR2461539 · Zbl 1185.05124 · doi:10.1214/EJP.v13-580 [2] BACCELLI, F. and BORDENAVE, C. (2007). The radial spanning tree of a Poisson point process. Ann. Appl. Probab. 17 305-359. Digital Object Identifier: 10.1214/105051606000000826 Google Scholar: Lookup Link MathSciNet: MR2292589 · Zbl 1136.60007 · doi:10.1214/105051606000000826 [3] BENJAMINI, I. and SCHRAMM, O. (1996). Percolation beyond \(\mathbf{Z}^{\mathit{d}} \), many questions and a few answers. Electron. Commun. Probab. 1 71-82. Digital Object Identifier: 10.1214/ECP.v1-978 Google Scholar: Lookup Link MathSciNet: MR1423907 · Zbl 0890.60091 · doi:10.1214/ECP.v1-978 [4] Benjamini, I. and Schramm, O. (2001). Percolation in the hyperbolic plane. J. Amer. Math. Soc. 14 487-507. Digital Object Identifier: 10.1090/S0894-0347-00-00362-3 Google Scholar: Lookup Link MathSciNet: MR1815220 · Zbl 1037.82018 · doi:10.1090/S0894-0347-00-00362-3 [5] BOGUNÁ, M., PAPADOPOULOS, F. and KRIOUKOV, D. (2010). Sustaining the Internet with hyperbolic mapping. Nat. Commun. 1 62. [6] Burton, R. M. and Keane, M. (1989). Density and uniqueness in percolation. Comm. Math. Phys. 121 501-505. MathSciNet: MR0990777 MathSciNet: MR990777 · Zbl 0662.60113 [7] CALKA, P., CHAPRON, A. and ENRIQUEZ, N. (2021). Poisson-Voronoi tessellation on a Riemannian manifold. Int. Math. Res. Not. IMRN 7 5413-5459. Digital Object Identifier: 10.1093/imrn/rnz357 Google Scholar: Lookup Link MathSciNet: MR4241132 · Zbl 1483.53033 · doi:10.1093/imrn/rnz357 [8] CALKA, P. and TYKESSON, J. (2010). Asymptotics of visibility in the hyperbolic plane. arXiv preprint. Available at arXiv:1012.5220. [9] CANNON, J. W., FLOYD, W. J., KENYON, R. and PARRY, W. R. (1997). Hyperbolic geometry. In Flavors of Geometry. Math. Sci. Res. Inst. Publ. 31 59-115. Cambridge Univ. Press, Cambridge. MathSciNet: MR1491098 · Zbl 0899.51012 [10] CHAVEL, I. (2006). Riemannian Geometry, 2nd ed. Cambridge Studies in Advanced Mathematics 98. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.1017/CBO9780511616822 Google Scholar: Lookup Link MathSciNet: MR2229062 · doi:10.1017/CBO9780511616822 [11] CHIU, S. N., STOYAN, D., KENDALL, W. S. and MECKE, J. (2013). Stochastic Geometry and Its Applications, 3rd ed. Wiley Series in Probability and Statistics. Wiley, Chichester. Digital Object Identifier: 10.1002/9781118658222 Google Scholar: Lookup Link MathSciNet: MR3236788 · Zbl 1291.60005 · doi:10.1002/9781118658222 [12] COUPIER, D. FLAMMANT, L. TRAN, V.C. (2020). Hyperbolic radial spanning tree. arXiv preprint. Available at arXiv:2012.03467. [13] COUPIER, D., SAHA, K., SARKAR, A. and TRAN, V. C. (2021). The 2d-directed spanning forest converges to the Brownian web. Ann. Probab. 49 435-484. Digital Object Identifier: 10.1214/20-AOP1478 Google Scholar: Lookup Link MathSciNet: MR4203342 · Zbl 1476.60021 · doi:10.1214/20-AOP1478 [14] COUPIER, D. and TRAN, V. C. (2013). The 2D-directed spanning forest is almost surely a tree. Random Structures Algorithms 42 59-72. Digital Object Identifier: 10.1002/rsa.20400 Google Scholar: Lookup Link MathSciNet: MR2999212 zbMATH: 1257.05159 · Zbl 1257.05159 · doi:10.1002/rsa.20400 [15] FERRARI, P. A., LANDIM, C. and THORISSON, H. (2004). Poisson trees, succession lines and coalescing random walks. Ann. Inst. Henri Poincaré Probab. Stat. 40 141-152. Digital Object Identifier: 10.1016/S0246-0203(03)00066-9 Google Scholar: Lookup Link MathSciNet: MR2044812 · Zbl 1042.60064 · doi:10.1016/S0246-0203(03)00066-9 [16] FLAMMANT, L. (2019). The directed spanning forest in the hyperbolic space: Extended version. Hal CNRS. Available at https://hal-cnrs.archives-ouvertes.fr/hal-02364356. [17] FLAMMANT, L. (2024). Supplement to “The directed spanning forest in the hyperbolic space.” https://doi.org/10.1214/23-AAP1932SUPP [18] FOUNTOULAKIS, N., VAN DER HOORN, P., MÜLLER, T. and SCHEPERS, M. (2021). Clustering in a hyperbolic model of complex networks. Electron. J. Probab. 26 13. Digital Object Identifier: 10.1214/21-ejp583 Google Scholar: Lookup Link MathSciNet: MR4216526 · Zbl 1468.05276 · doi:10.1214/21-ejp583 [19] GANGOPADHYAY, S., ROY, R. and SARKAR, A. (2004). Random oriented trees: A model of drainage networks. Ann. Appl. Probab. 14 1242-1266. Digital Object Identifier: 10.1214/105051604000000288 Google Scholar: Lookup Link MathSciNet: MR2071422 · Zbl 1047.60098 · doi:10.1214/105051604000000288 [20] HOWARD, C. D. and NEWMAN, C. M. (2001). Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29 577-623. Digital Object Identifier: 10.1214/aop/1008956685 Google Scholar: Lookup Link MathSciNet: MR1849171 · Zbl 1062.60099 · doi:10.1214/aop/1008956685 [21] IVERSEN, B. (1992). Hyperbolic Geometry. London Mathematical Society Student Texts 25. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.1017/CBO9780511569333 Google Scholar: Lookup Link MathSciNet: MR1205776 · Zbl 0766.51002 · doi:10.1017/CBO9780511569333 [22] Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product measures. Ann. Probab. 25 71-95. Digital Object Identifier: 10.1214/aop/1024404279 Google Scholar: Lookup Link MathSciNet: MR1428500 · Zbl 0882.60046 · doi:10.1214/aop/1024404279 [23] LYONS, R. and PERES, Y. (2017). Probability on Trees and Networks 42. Cambridge Univ. Press, Cambridge. [24] MARKVORSEN, S., MCGUINNESS, S. and THOMASSEN, C. (1992). Transient random walks on graphs and metric spaces with applications to hyperbolic surfaces. Proc. Lond. Math. Soc. 3 1-20. · Zbl 0772.05086 [25] Meester, R. and Roy, R. (1996). Continuum Percolation. Cambridge Tracts in Mathematics 119. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.1017/CBO9780511895357 Google Scholar: Lookup Link MathSciNet: MR1409145 · Zbl 0858.60092 · doi:10.1017/CBO9780511895357 [26] Norris, J. and Turner, A. (2012). Hastings-Levitov aggregation in the small-particle limit. Comm. Math. Phys. 316 809-841. Digital Object Identifier: 10.1007/s00220-012-1552-6 Google Scholar: Lookup Link MathSciNet: MR2993934 · Zbl 1259.82026 · doi:10.1007/s00220-012-1552-6 [27] PAUPERT, J. (2016). Introduction to Hyperbolic Geometry. Lecture Notes (Arizona State University). Available at https://math.la.asu.edu/texttildelowpaupert/HyperbolicGeometryNotes.pdf. [28] PETE, G. (2014). Probability and Geometry on Groups. Lecture Notes for a Graduate Course, Available at http://www.math.bme.hu/texttildelowgabor/PGG.pdf. [29] RATCLIFFE, J. G. (2006). Foundations of Hyperbolic Manifolds, 2nd ed. Graduate Texts in Mathematics 149. Springer, New York. MathSciNet: MR2249478 · Zbl 1106.51009 [30] ROY, R., SAHA, K. and SARKAR, A. (2016). Random directed forest and the Brownian web. Ann. Inst. Henri Poincaré Probab. Stat. 52 1106-1143. Digital Object Identifier: 10.1214/15-AIHP672 Google Scholar: Lookup Link MathSciNet: MR3531702 · Zbl 1375.60038 · doi:10.1214/15-AIHP672 [31] TYKESSON, J. (2007). The number of unbounded components in the Poisson Boolean model of continuum percolation in hyperbolic space. Electron. J. Probab. 12 1379-1401. Digital Object Identifier: 10.1214/EJP.v12-460 Google Scholar: Lookup Link MathSciNet: MR2354162 · Zbl 1136.82010 · doi:10.1214/EJP.v12-460 [32] UPFAL, E. (2005). Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge Univ. Press, Cambridge. · Zbl 1092.60001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.