×

Volterra square-root process: stationarity and regularity of the law. (English) Zbl 1534.60048

Summary: The Volterra square-root process on \(\mathbb{R}_+^m\) is an affine Volterra process with continuous sample paths. Under a suitable integrability condition on the resolvent of the second kind associated with the Volterra convolution kernel, we establish the existence of limiting distributions. In contrast to the classical square-root diffusion process, here the limiting distributions may depend on the initial state of the process. Our result shows that the nonuniqueness of limiting distributions is closely related to the integrability of the Volterra convolution kernel. Using an extension of the exponential-affine transformation formula, we also give the construction of stationary processes associated with the limiting distributions. Finally, we prove that the time marginals as well as the limiting distributions, when restricted to the interior of the state space \(\mathbb{R}_+^m\), are absolutely continuous with respect to the Lebesgue measure and their densities belong to some weighted Besov space of type \(B_{1, \infty}^{\lambda}\).

MSC:

60G22 Fractional processes, including fractional Brownian motion
45D05 Volterra integral equations
91G20 Derivative securities (option pricing, hedging, etc.)

References:

[1] ABI JABER, E. (2022). The Laplace transform of the integrated Volterra Wishart process. Math. Finance 32 309-348. Digital Object Identifier: 10.1111/mafi.12334 Google Scholar: Lookup Link MathSciNet: MR4370808 · Zbl 1522.91254 · doi:10.1111/mafi.12334
[2] ABI JABER, E., CUCHIERO, C., LARSSON, M. and PULIDO, S. (2021). A weak solution theory for stochastic Volterra equations of convolution type. Ann. Appl. Probab. 31 2924-2952. Digital Object Identifier: 10.1214/21-aap1667 Google Scholar: Lookup Link MathSciNet: MR4350978 · Zbl 1484.60073 · doi:10.1214/21-aap1667
[3] Abi Jaber, E., Larsson, M. and Pulido, S. (2019). Affine Volterra processes. Ann. Appl. Probab. 29 3155-3200. Digital Object Identifier: 10.1214/19-AAP1477 Google Scholar: Lookup Link MathSciNet: MR4019885 · Zbl 1441.60052 · doi:10.1214/19-AAP1477
[4] ABI JABER, E., MILLER, E. and PHAM, H. (2021). Markowitz portfolio selection for multivariate affine and quadratic Volterra models. SIAM J. Financial Math. 12 369-409. Digital Object Identifier: 10.1137/20M1347449 Google Scholar: Lookup Link MathSciNet: MR4229250 · Zbl 1460.91243 · doi:10.1137/20M1347449
[5] ABI JABER, E., MILLER, E. and PHAM, H. (2021). Linear-quadratic control for a class of stochastic Volterra equations: Solvability and approximation. Ann. Appl. Probab. 31 2244-2274. Digital Object Identifier: 10.1214/20-aap1645 Google Scholar: Lookup Link MathSciNet: MR4332695 · Zbl 1475.93116 · doi:10.1214/20-aap1645
[6] BARCZY, M., DÖRING, L., LI, Z. and PAP, G. (2013). On parameter estimation for critical affine processes. Electron. J. Stat. 7 647-696. Digital Object Identifier: 10.1214/13-EJS786 Google Scholar: Lookup Link MathSciNet: MR3035268 · Zbl 1336.60165 · doi:10.1214/13-EJS786
[7] BARCZY, M., DÖRING, L., LI, Z. and PAP, G. (2014). Parameter estimation for a subcritical affine two factor model. J. Statist. Plann. Inference 151/152 37-59. Digital Object Identifier: 10.1016/j.jspi.2014.04.001 Google Scholar: Lookup Link MathSciNet: MR3216637 · Zbl 1288.62033 · doi:10.1016/j.jspi.2014.04.001
[8] BARCZY, M., PAP, G. and SZABÓ, T. T. (2016). Parameter estimation for the subcritical Heston model based on discrete time observations. Acta Sci. Math. (Szeged) 82 313-338. Digital Object Identifier: 10.14232/actasm-015-016-0 Google Scholar: Lookup Link MathSciNet: MR3526353 · Zbl 1374.62154 · doi:10.14232/actasm-015-016-0
[9] BENTH, F. E., DETERING, N. and KRÜHNER, P. (2022). Stochastic Volterra integral equations and a class of first-order stochastic partial differential equations. Stochastics 94 1054-1076. Digital Object Identifier: 10.1080/17442508.2021.2019738 Google Scholar: Lookup Link MathSciNet: MR4503737 · Zbl 1502.60084 · doi:10.1080/17442508.2021.2019738
[10] CONT, R. and DAS, P. (2022). Rough volatility: Fact or artefact? Available at arXiv:2203.13820.
[11] Cuchiero, C. and Teichmann, J. (2019). Markovian lifts of positive semidefinite affine Volterra-type processes. Decis. Econ. Finance 42 407-448. Digital Object Identifier: 10.1007/s10203-019-00268-5 Google Scholar: Lookup Link MathSciNet: MR4031333 · Zbl 1432.91110 · doi:10.1007/s10203-019-00268-5
[12] Cuchiero, C. and Teichmann, J. (2020). Generalized Feller processes and Markovian lifts of stochastic Volterra processes: The affine case. J. Evol. Equ. 20 1301-1348. Digital Object Identifier: 10.1007/s00028-020-00557-2 Google Scholar: Lookup Link MathSciNet: MR4181950 · Zbl 1462.60083 · doi:10.1007/s00028-020-00557-2
[13] DEBUSSCHE, A. and FOURNIER, N. (2013). Existence of densities for stable-like driven SDE’s with Hölder continuous coefficients. J. Funct. Anal. 264 1757-1778. Digital Object Identifier: 10.1016/j.jfa.2013.01.009 Google Scholar: Lookup Link MathSciNet: MR3022725 · Zbl 1272.60032 · doi:10.1016/j.jfa.2013.01.009
[14] EL EUCH, O., FUKASAWA, M. and ROSENBAUM, M. (2018). The microstructural foundations of leverage effect and rough volatility. Finance Stoch. 22 241-280. Digital Object Identifier: 10.1007/s00780-018-0360-z Google Scholar: Lookup Link MathSciNet: MR3778355 zbMATH: 1410.91491 · Zbl 1410.91491 · doi:10.1007/s00780-018-0360-z
[15] El Euch, O. and Rosenbaum, M. (2018). Perfect hedging in rough Heston models. Ann. Appl. Probab. 28 3813-3856. Digital Object Identifier: 10.1214/18-AAP1408 Google Scholar: Lookup Link MathSciNet: MR3861827 zbMATH: 1418.91467 · Zbl 1418.91467 · doi:10.1214/18-AAP1408
[16] El Euch, O. and Rosenbaum, M. (2019). The characteristic function of rough Heston models. Math. Finance 29 3-38. Digital Object Identifier: 10.1111/mafi.12173 Google Scholar: Lookup Link MathSciNet: MR3905737 · Zbl 1411.91553 · doi:10.1111/mafi.12173
[17] FARKAS, B., FRIESEN, M., RÜDIGER, B. and SCHROERS, D. (2021). On a class of stochastic partial differential equations with multiple invariant measures. NoDEA Nonlinear Differential Equations Appl. 28 28. Digital Object Identifier: 10.1007/s00030-021-00691-x Google Scholar: Lookup Link MathSciNet: MR4241464 · Zbl 1469.37055 · doi:10.1007/s00030-021-00691-x
[18] FILIPOVIĆ, D., MAYERHOFER, E. and SCHNEIDER, P. (2013). Density approximations for multivariate affine jump-diffusion processes. J. Econometrics 176 93-111. Digital Object Identifier: 10.1016/j.jeconom.2012.12.003 Google Scholar: Lookup Link MathSciNet: MR3084047 · Zbl 1284.62110 · doi:10.1016/j.jeconom.2012.12.003
[19] Flandoli, F. and Gatarek, D. (1995). Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Related Fields 102 367-391. Digital Object Identifier: 10.1007/BF01192467 Google Scholar: Lookup Link MathSciNet: MR1339739 · Zbl 0831.60072 · doi:10.1007/BF01192467
[20] FORDE, M., GERHOLD, S. and SMITH, B. (2021). Small-time, large-time, and \(\mathit{H} \to 0\) asymptotics for the rough Heston model. Math. Finance 31 203-241. Digital Object Identifier: 10.1111/mafi.12290 Google Scholar: Lookup Link MathSciNet: MR4205882 · Zbl 1522.91243 · doi:10.1111/mafi.12290
[21] FORDE, M., GERHOLD, S. and SMITH, B. (2022). Small-time VIX smile and the stationary distribution for the rough heston model.
[22] FRIESEN, M. and JIN, P. (2020). On the anisotropic stable JCIR process. ALEA Lat. Am. J. Probab. Math. Stat. 17 643-674. Digital Object Identifier: 10.30757/alea.v17-25 Google Scholar: Lookup Link MathSciNet: MR4130578 · Zbl 1459.60123 · doi:10.30757/alea.v17-25
[23] FRIESEN, M., JIN, P., KREMER, J. and RÜDIGER, B. (2023). Regularity of transition densities and ergodicity for affine jump-diffusions. Math. Nachr. 296 1117-1134. Digital Object Identifier: 10.1002/mana.202000299 Google Scholar: Lookup Link MathSciNet: MR4585666 · Zbl 1528.37001 · doi:10.1002/mana.202000299
[24] FRIESEN, M., JIN, P. and RÜDIGER, B. (2020). Existence of densities for multi-type continuous-state branching processes with immigration. Stochastic Process. Appl. 130 5426-5452. Digital Object Identifier: 10.1016/j.spa.2020.03.012 Google Scholar: Lookup Link MathSciNet: MR4127334 · Zbl 1453.60040 · doi:10.1016/j.spa.2020.03.012
[25] FRIESEN, M., JIN, P. and RÜDIGER, B. (2020). Stochastic equation and exponential ergodicity in Wasserstein distances for affine processes. Ann. Appl. Probab. 30 2165-2195. Digital Object Identifier: 10.1214/19-AAP1554 Google Scholar: Lookup Link MathSciNet: MR4149525 · Zbl 1464.37007 · doi:10.1214/19-AAP1554
[26] FUKASAWA, M. (2021). Volatility has to be rough. Quant. Finance 21 1-8. Digital Object Identifier: 10.1080/14697688.2020.1825781 Google Scholar: Lookup Link MathSciNet: MR4188876 · Zbl 1484.91474 · doi:10.1080/14697688.2020.1825781
[27] FUKASAWA, M., TAKABATAKE, T. and WESTPHAL, R. (2019). Is volatility rough? Available at arXiv:1905.04852.
[28] Gatheral, J., Jaisson, T. and Rosenbaum, M. (2018). Volatility is rough. Quant. Finance 18 933-949. Digital Object Identifier: 10.1080/14697688.2017.1393551 Google Scholar: Lookup Link MathSciNet: MR3805308 · Zbl 1400.91590 · doi:10.1080/14697688.2017.1393551
[29] GERHOLD, S., GERSTENECKER, C. and PINTER, A. (2019). Moment explosions in the rough Heston model. Decis. Econ. Finance 42 575-608. Digital Object Identifier: 10.1007/s10203-019-00267-6 Google Scholar: Lookup Link MathSciNet: MR4031338 · Zbl 1432.91123 · doi:10.1007/s10203-019-00267-6
[30] GLASSERMAN, P. and KIM, K.-K. (2010). Moment explosions and stationary distributions in affine diffusion models. Math. Finance 20 1-33. Digital Object Identifier: 10.1111/j.1467-9965.2009.00387.x Google Scholar: Lookup Link MathSciNet: MR2599675 · Zbl 1182.91215 · doi:10.1111/j.1467-9965.2009.00387.x
[31] Gripenberg, G., Londen, S.-O. and Staffans, O. (1990). Volterra Integral and Functional Equations. Encyclopedia of Mathematics and Its Applications 34. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.1017/CBO9780511662805 Google Scholar: Lookup Link MathSciNet: MR1050319 · doi:10.1017/CBO9780511662805
[32] HAN, B. and WONG, H. Y. (2021). Mean-variance portfolio selection under Volterra Heston model. Appl. Math. Optim. 84 683-710. Digital Object Identifier: 10.1007/s00245-020-09658-3 Google Scholar: Lookup Link MathSciNet: MR4283941 · Zbl 1470.91242 · doi:10.1007/s00245-020-09658-3
[33] HAN, B. and WONG, H. Y. (2021). Merton’s portfolio problem under Volterra Heston model. Finance Res. Lett. 39 101580.
[34] JACQUIER, A., PANNIER, A. and SPILIOPOULOS, K. (2022). On the ergodic behaviour of affine Volterra processes. Available at arXiv:2204.05270.
[35] JIN, P., KREMER, J. and RÜDIGER, B. (2020). Existence of limiting distribution for affine processes. J. Math. Anal. Appl. 486 123912. Digital Object Identifier: 10.1016/j.jmaa.2020.123912 Google Scholar: Lookup Link MathSciNet: MR4060087 · Zbl 1451.60084 · doi:10.1016/j.jmaa.2020.123912
[36] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. Digital Object Identifier: 10.1007/978-1-4757-4015-8 Google Scholar: Lookup Link MathSciNet: MR1876169 MathSciNet: MR3656342 · doi:10.1007/978-1-4757-4015-8
[37] LIEB, E. H. and LOSS, M. (2001). Analysis, 2nd ed. Graduate Studies in Mathematics 14. Amer. Math. Soc., Providence, RI. Digital Object Identifier: 10.1090/gsm/014 Google Scholar: Lookup Link MathSciNet: MR1817225 · doi:10.1090/gsm/014
[38] MAYERHOFER, E., STELZER, R. and VESTWEBER, J. (2020). Geometric ergodicity of affine processes on cones. Stochastic Process. Appl. 130 4141-4173. Digital Object Identifier: 10.1016/j.spa.2019.11.012 Google Scholar: Lookup Link MathSciNet: MR4102262 · Zbl 1434.60195 · doi:10.1016/j.spa.2019.11.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.