Ferrari, Patrik; Occelli, Alessandra Time-time covariance for last passage percolation in half-space. (English) Zbl 07829152 Ann. Appl. Probab. 34, No. 1A, 627-674 (2024). Summary: This article studies several properties of the half-space last passage percolation, in particular the two-time covariance. We show that, when the two end-points are at small macroscopic distance, then the first-order correction to the covariance for the point-to-point model is the same as the one of the stationary model. In order to obtain the result, we first derive comparison inequalities of the last passage increments for different models. This is used to prove tightness of the point-to-point process as well as localization of the geodesics. Unlike for the full-space case, for half-space we have to overcome the difficulty that the point-to-point model in half-space with generic start and end-points is not known. Cited in 2 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 82C22 Interacting particle systems in time-dependent statistical mechanics 82B43 Percolation Keywords:last passage percolation; KPZ universality class; time-time correlations; half-space models × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] BAIK, J. (2002). Painlevé expressions for LOE, LSE, and interpolating ensembles. Int. Math. Res. Not. 33 1739-1789. Digital Object Identifier: 10.1155/S1073792802205036 Google Scholar: Lookup Link MathSciNet: MR1913947 · Zbl 1016.60018 · doi:10.1155/S1073792802205036 [2] BAIK, J., BARRAQUAND, G., CORWIN, I. and SUIDAN, T. (2018). Facilitated exclusion process. In Computation and Combinatorics in Dynamics, Stochastics and Control (E. Celledoni, G. Di Nunno, K. Ebrahimi-Fard and H. Z. Munthe-Kaas, eds.). Abel Symp. 13 1-35. Springer, Cham. MathSciNet: MR3967378 · Zbl 1408.60092 [3] BAIK, J., BARRAQUAND, G., CORWIN, I. and SUIDAN, T. (2018). Pfaffian Schur processes and last passage percolation in a half-quadrant. Ann. Probab. 46 3015-3089. Digital Object Identifier: 10.1214/17-AOP1226 Google Scholar: Lookup Link MathSciNet: MR3857852 · Zbl 1428.60134 · doi:10.1214/17-AOP1226 [4] BAIK, J., FERRARI, P. L. and PÉCHÉ, S. (2010). Limit process of stationary TASEP near the characteristic line. Comm. Pure Appl. Math. 63 1017-1070. Digital Object Identifier: 10.1002/cpa.20316 Google Scholar: Lookup Link MathSciNet: MR2642384 · Zbl 1194.82067 · doi:10.1002/cpa.20316 [5] BAIK, J. and LIU, Z. (2016). TASEP on a ring in sub-relaxation time scale. J. Stat. Phys. 165 1051-1085. Digital Object Identifier: 10.1007/s10955-016-1665-y Google Scholar: Lookup Link MathSciNet: MR3575637 · Zbl 1440.82007 · doi:10.1007/s10955-016-1665-y [6] Baik, J. and Liu, Z. (2019). Multipoint distribution of periodic TASEP. J. Amer. Math. Soc. 32 609-674. Digital Object Identifier: 10.1090/jams/915 Google Scholar: Lookup Link MathSciNet: MR3981984 · Zbl 1484.60104 · doi:10.1090/jams/915 [7] BAIK, J. and RAINS, E. M. (2001). Algebraic aspects of increasing subsequences. Duke Math. J. 109 1-65. Digital Object Identifier: 10.1215/S0012-7094-01-10911-3 Google Scholar: Lookup Link MathSciNet: MR1844203 · Zbl 1007.05096 · doi:10.1215/S0012-7094-01-10911-3 [8] BAIK, J. and RAINS, E. M. (2001). The asymptotics of monotone subsequences of involutions. Duke Math. J. 109 205-281. Digital Object Identifier: 10.1215/S0012-7094-01-10921-6 Google Scholar: Lookup Link MathSciNet: MR1845180 · Zbl 1007.60003 · doi:10.1215/S0012-7094-01-10921-6 [9] BAIK, J. and RAINS, E. M. (2001). Symmetrized random permutations. In Random Matrix Models and Their Applications. Math. Sci. Res. Inst. Publ. 40 1-19. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.2977/prims/1145475964 Google Scholar: Lookup Link MathSciNet: MR1842780 · Zbl 1071.46017 · doi:10.2977/prims/1145475964 [10] BALÁZS, M., BUSANI, O. and SEPPÄLÄINEN, T. (2021). Local stationarity in exponential last-passage percolation. Probab. Theory Related Fields 180 113-162. Digital Object Identifier: 10.1007/s00440-021-01035-7 Google Scholar: Lookup Link MathSciNet: MR4265019 · Zbl 1483.60144 · doi:10.1007/s00440-021-01035-7 [11] BARRAQUAND, G., BORODIN, A. and CORWIN, I. (2020). Half-space Macdonald processes. Forum Math. Pi 8 e11, 150. Digital Object Identifier: 10.1017/fmp.2020.3 Google Scholar: Lookup Link MathSciNet: MR4108914 · Zbl 1445.60071 · doi:10.1017/fmp.2020.3 [12] BARRAQUAND, G. and CORWIN, I. (2022). Stationary measures for the log-gamma polymer and KPZ equation in half-space. arXiv:2203.11037. [13] BARRAQUAND, G., KRAJENBRINK, A. and LE DOUSSAL, P. (2020). Half-space stationary Kardar-Parisi-Zhang equation. J. Stat. Phys. 181 1149-1203. Digital Object Identifier: 10.1007/s10955-020-02622-z Google Scholar: Lookup Link MathSciNet: MR4163497 · Zbl 1462.82045 · doi:10.1007/s10955-020-02622-z [14] BARRAQUAND, G., KRAJENBRINK, A. and LE DOUSSAL, P. (2022). Half-space stationary Kardar-Parisi-Zhang equation beyond the Brownian case. J. Phys. A 55 Paper No. 275004, 40. Digital Object Identifier: 10.1088/1751-8121/ac761d Google Scholar: Lookup Link MathSciNet: MR4449996 · Zbl 1507.35286 · doi:10.1088/1751-8121/ac761d [15] BARRAQUAND, G. and LE DOUSSAL, P. (2021). Kardar-Parisi-Zhang equation in a half space with flat initial condition and the unbinding of a directed polymer from an attractive wall. Phys. Rev. E 104 Paper No. 024502, 25. Digital Object Identifier: 10.1103/physreve.104.024502 Google Scholar: Lookup Link MathSciNet: MR4310415 · doi:10.1103/physreve.104.024502 [16] BASU, R. and GANGULY, S. (2021). Time correlation exponents in last passage percolation. In In and Out of Equilibrium 3. Celebrating Vladas Sidoravicius (M. E. Vares, R. Fernández, L. R. Fontes and C. M. Newman, eds.). Progress in Probability 77 101-123. Birkhäuser/Springer, Cham. Digital Object Identifier: 10.1007/978-3-030-60754-8_5 Google Scholar: Lookup Link MathSciNet: MR4237265 · Zbl 1469.60305 · doi:10.1007/978-3-030-60754-8_5 [17] BASU, R., GANGULY, S., HEGDE, M. and KRISHNAPUR, M. (2021). Lower deviations in \(β\)-ensembles and law of iterated logarithm in last passage percolation. Israel J. Math. 242 291-324. Digital Object Identifier: 10.1007/s11856-021-2135-z Google Scholar: Lookup Link MathSciNet: MR4282085 · Zbl 1489.60152 · doi:10.1007/s11856-021-2135-z [18] BASU, R., GANGULY, S. and ZHANG, L. (2021). Temporal correlation in last passage percolation with flat initial condition via Brownian comparison. Comm. Math. Phys. 383 1805-1888. Digital Object Identifier: 10.1007/s00220-021-03958-7 Google Scholar: Lookup Link MathSciNet: MR4244262 · Zbl 1468.60111 · doi:10.1007/s00220-021-03958-7 [19] BASU, R., SIDORAVICIUS, V. and SLY, A. (2014). Last passage percolation with a defect line and the solution of the slow bond problem. arXiv:1408.3464. [20] BETEA, D., BOUTTIER, J., NEJJAR, P. and VULETIĆ, M. (2018). The free boundary Schur process and applications I. Ann. Henri Poincaré 19 3663-3742. Digital Object Identifier: 10.1007/s00023-018-0723-1 Google Scholar: Lookup Link MathSciNet: MR3877514 · Zbl 1401.60089 · doi:10.1007/s00023-018-0723-1 [21] BETEA, D., FERRARI, P. L. and OCCELLI, A. (2020). Stationary half-space last passage percolation. Comm. Math. Phys. 377 421-467. Digital Object Identifier: 10.1007/s00220-020-03712-5 Google Scholar: Lookup Link MathSciNet: MR4107934 · Zbl 1445.60072 · doi:10.1007/s00220-020-03712-5 [22] BETEA, D., FERRARI, P. L. and OCCELLI, A. (2022). The half-space Airy stat process. Stochastic Process. Appl. 146 207-263. Digital Object Identifier: 10.1016/j.spa.2022.01.002 Google Scholar: Lookup Link MathSciNet: MR4370570 · Zbl 1490.60261 · doi:10.1016/j.spa.2022.01.002 [23] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. MathSciNet: MR0233396 · Zbl 0172.21201 [24] BUSANI, O. and FERRARI, P. L. (2022). Universality of the geodesic tree in last passage percolation. Ann. Probab. 50 90-130. Digital Object Identifier: 10.1214/21-aop1530 Google Scholar: Lookup Link MathSciNet: MR4385124 · Zbl 1499.60325 · doi:10.1214/21-aop1530 [25] Cator, E. and Pimentel, L. P. R. (2015). On the local fluctuations of last-passage percolation models. Stochastic Process. Appl. 125 538-551. Digital Object Identifier: 10.1016/j.spa.2014.08.009 Google Scholar: Lookup Link MathSciNet: MR3293293 · Zbl 1326.60134 · doi:10.1016/j.spa.2014.08.009 [26] Chhita, S., Ferrari, P. L. and Spohn, H. (2018). Limit distributions for KPZ growth models with spatially homogeneous random initial conditions. Ann. Appl. Probab. 28 1573-1603. Digital Object Identifier: 10.1214/17-AAP1338 Google Scholar: Lookup Link MathSciNet: MR3809472 · Zbl 1397.82040 · doi:10.1214/17-AAP1338 [27] Corwin, I., Ferrari, P. L. and Péché, S. (2012). Universality of slow decorrelation in KPZ growth. Ann. Inst. Henri Poincaré Probab. Stat. 48 134-150. Digital Object Identifier: 10.1214/11-AIHP440 Google Scholar: Lookup Link MathSciNet: MR2919201 · Zbl 1247.82041 · doi:10.1214/11-AIHP440 [28] CORWIN, I., GHOSAL, P. and HAMMOND, A. (2021). KPZ equation correlations in time. Ann. Probab. 49 832-876. Digital Object Identifier: 10.1214/20-aop1461 Google Scholar: Lookup Link MathSciNet: MR4255132 · Zbl 1467.60045 · doi:10.1214/20-aop1461 [29] Corwin, I., Liu, Z. and Wang, D. (2016). Fluctuations of TASEP and LPP with general initial data. Ann. Appl. Probab. 26 2030-2082. Digital Object Identifier: 10.1214/15-AAP1139 Google Scholar: Lookup Link MathSciNet: MR3543889 · Zbl 1356.82013 · doi:10.1214/15-AAP1139 [30] DE NARDIS, J., KRAJENBRINK, A., LE DOUSSAL, P. and THIERY, T. (2020). Delta-Bose gas on a half-line and the Kardar-Parisi-Zhang equation: Boundary bound states and unbinding transitions. J. Stat. Mech. Theory Exp. 4 043207, 51. Digital Object Identifier: 10.1088/1742-5468/ab7751 Google Scholar: Lookup Link MathSciNet: MR4148624 zbMATH: 1457.82231 · Zbl 1457.82231 · doi:10.1088/1742-5468/ab7751 [31] DE NARDIS, J. and LE DOUSSAL, P. (2017). Tail of the two-time height distribution for KPZ growth in one dimension. J. Stat. Mech. Theory Exp. 5 053212, 72. Digital Object Identifier: 10.1088/1742-5468/aa6bce Google Scholar: Lookup Link MathSciNet: MR3664392 · Zbl 1457.82286 · doi:10.1088/1742-5468/aa6bce [32] DE NARDIS, J. and LE DOUSSAL, P. (2018). Two-time height distribution for 1D KPZ growth: The recent exact result and its tail via replica. J. Stat. Mech. Theory Exp. 9 093203, 18. Digital Object Identifier: 10.1088/1742-5468/aad6b3 Google Scholar: Lookup Link MathSciNet: MR3869061 zbMATH: 1457.82287 · Zbl 1457.82287 · doi:10.1088/1742-5468/aad6b3 [33] DE NARDIS, J., LE DOUSSAL, P. and TAKEUCHI, K. A. (2017). Memory and universality in interface growth. Phys. Rev. Lett. 118 125701, 5. Digital Object Identifier: 10.1103/PhysRevLett.118.125701 Google Scholar: Lookup Link MathSciNet: MR3682581 · doi:10.1103/PhysRevLett.118.125701 [34] DEIFT, P. A. and ZHOU, X. (1995). Asymptotics for the Painlevé II equation. Comm. Pure Appl. Math. 48 277-337. Digital Object Identifier: 10.1002/cpa.3160480304 Google Scholar: Lookup Link MathSciNet: MR1322812 · Zbl 0869.34047 · doi:10.1002/cpa.3160480304 [35] EMRAH, E., JANJIGIAN, C. and SEPPÄLÄINEN, T. (2020). Right-tail moderate deviations in the exponential last-passage percolation. arXiv:2004.04285. [36] FAN, W.-T. L. and SEPPÄLÄINEN, T. (2020). Joint distribution of Busemann functions in the exactly solvable corner growth model. Probab. Math. Phys. 1 55-100. Digital Object Identifier: 10.2140/pmp.2020.1.55 Google Scholar: Lookup Link MathSciNet: MR4408003 · Zbl 1487.60180 · doi:10.2140/pmp.2020.1.55 [37] Ferrari, P. L., Ghosal, P. and Nejjar, P. (2019). Limit law of a second class particle in TASEP with non-random initial condition. Ann. Inst. Henri Poincaré Probab. Stat. 55 1203-1225. Digital Object Identifier: 10.1214/18-aihp916 Google Scholar: Lookup Link MathSciNet: MR4010933 MathSciNet: MR3814245 · Zbl 1472.82023 · doi:10.1214/18-aihp916 [38] FERRARI, P. L. and OCCELLI, A. (2019). Time-time covariance for last passage percolation with generic initial profile. Math. Phys. Anal. Geom. 22 Paper No. 1, 33. Digital Object Identifier: 10.1007/s11040-018-9300-6 Google Scholar: Lookup Link MathSciNet: MR3895778 MathSciNet: MR2013667 · Zbl 1405.60144 · doi:10.1007/s11040-018-9300-6 [39] Ferrari, P. L. and Spohn, H. (2006). Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Comm. Math. Phys. 265 1-44. Digital Object Identifier: 10.1007/s00220-006-1549-0 Google Scholar: Lookup Link MathSciNet: MR2217295 · Zbl 1118.82032 · doi:10.1007/s00220-006-1549-0 [40] FERRARI, P. L. and SPOHN, H. (2016). On time correlations for KPZ growth in one dimension. SIGMA Symmetry Integrability Geom. Methods Appl. 12 Paper No. 074, 23. Digital Object Identifier: 10.3842/SIGMA.2016.074 Google Scholar: Lookup Link MathSciNet: MR3529743 · Zbl 1344.60095 · doi:10.3842/SIGMA.2016.074 [41] GROSSKINSKY, S. (2004). Phase transitions in nonequilibrium stochastic particle systemswith local conservation laws. Ph.D. thesis, Technische Universität München. https://mediatum.ub.tum.de/602023. [42] GUEUDRÉ, T. and LE DOUSSAL, P. (2012). Directed polymer near a hard wall and KPZ equation in the half-space. Europhys. Lett. 100 26006. [43] ITO, Y. and TAKEUCHI, K. A. (2018). When fast and slow interfaces grow together: Connection to the half-space problem of the Kardar-Parisi-Zhang class. Phys. Rev. E 97 040103. [44] Johansson, K. (2000). Shape fluctuations and random matrices. Comm. Math. Phys. 209 437-476. Digital Object Identifier: 10.1007/s002200050027 Google Scholar: Lookup Link MathSciNet: MR1737991 · Zbl 0969.15008 · doi:10.1007/s002200050027 [45] Johansson, K. (2017). Two time distribution in Brownian directed percolation. Comm. Math. Phys. 351 441-492. Digital Object Identifier: 10.1007/s00220-016-2660-5 Google Scholar: Lookup Link MathSciNet: MR3613511 · Zbl 1366.82025 · doi:10.1007/s00220-016-2660-5 [46] Johansson, K. (2019). The two-time distribution in geometric last-passage percolation. Probab. Theory Related Fields 175 849-895. Digital Object Identifier: 10.1007/s00440-019-00901-9 Google Scholar: Lookup Link MathSciNet: MR4026607 · Zbl 1423.60158 · doi:10.1007/s00440-019-00901-9 [47] JOHANSSON, K. and RAHMAN, M. (2021). Multitime distribution in discrete polynuclear growth. Comm. Pure Appl. Math. 74 2561-2627. MathSciNet: MR4373163 · Zbl 1530.60084 [48] JOHANSSON, K. and RAHMAN, M. (2022). On inhomogeneous polynuclear growth. Ann. Probab. 50 559-590. Digital Object Identifier: 10.1214/21-aop1540 Google Scholar: Lookup Link MathSciNet: MR4399158 · Zbl 1487.60187 · doi:10.1214/21-aop1540 [49] KARDAR, M., PARISI, G. and ZHANG, Y. Z. (1986). Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 889-892. · Zbl 1101.82329 [50] KIM, Y. H. (2021). The lower tail of the half-space KPZ equation. Stochastic Process. Appl. 142 365-406. Digital Object Identifier: 10.1016/j.spa.2021.09.001 Google Scholar: Lookup Link MathSciNet: MR4318370 · Zbl 1480.60127 · doi:10.1016/j.spa.2021.09.001 [51] KRAJENBRINK, A. and LE DOUSSAL, P. (2018). Large fluctuations of the KPZ equation in a half-space. SciPost Phys. 5 032. [52] KRAJENBRINK, A. and LE DOUSSAL, P. (2020). Replica Bethe ansatz solution to the Kardar-Parisi-Zhang equation on the half-line. SciPost Phys. 8 Paper No. 035, 43. Digital Object Identifier: 10.21468/SciPostPhys.8.3.035 Google Scholar: Lookup Link MathSciNet: MR4176261 · doi:10.21468/SciPostPhys.8.3.035 [53] Ledoux, M. and Rider, B. (2010). Small deviations for beta ensembles. Electron. J. Probab. 15 1319-1343. Digital Object Identifier: 10.1214/EJP.v15-798 Google Scholar: Lookup Link MathSciNet: MR2678393 · Zbl 1228.60015 · doi:10.1214/EJP.v15-798 [54] LIU, Z. (2022). Multipoint distribution of TASEP. Ann. Probab. 50 1255-1321. Digital Object Identifier: 10.1214/21-aop1557 Google Scholar: Lookup Link MathSciNet: MR4420420 · Zbl 1490.60279 · doi:10.1214/21-aop1557 [55] PAREKH, S. (2022). Positive random walks and an identity for half-space SPDEs. Electron. J. Probab. 27 Paper No. 45, 47. Digital Object Identifier: 10.1214/22-ejp775 Google Scholar: Lookup Link MathSciNet: MR4406240 · Zbl 1530.60045 · doi:10.1214/22-ejp775 [56] Pimentel, L. P. R. (2018). Local behaviour of Airy processes. J. Stat. Phys. 173 1614-1638. Digital Object Identifier: 10.1007/s10955-018-2147-1 Google Scholar: Lookup Link MathSciNet: MR3880997 · Zbl 1405.82029 · doi:10.1007/s10955-018-2147-1 [57] SASAMOTO, T. and IMAMURA, T. (2004). Fluctuations of the one-dimensional polynuclear growth model in half-space. J. Stat. Phys. 115 749-803. Digital Object Identifier: 10.1023/B:JOSS.0000022374.73462.85 Google Scholar: Lookup Link MathSciNet: MR2054161 · Zbl 1073.82037 · doi:10.1023/B:JOSS.0000022374.73462.85 [58] TAKEUCHI, K. A. (2013). Crossover from growing to stationary interfaces in the Kardar-Parisi-Zhang class. Phys. Rev. Lett. 110 210604. [59] WU, X. (2020). Intermediate disorder regime for half-space directed polymers. J. Stat. Phys. 181 2372-2403. Digital Object Identifier: 10.1007/s10955-020-02668-z Google Scholar: Lookup Link MathSciNet: MR4179811 · Zbl 1462.82019 · doi:10.1007/s10955-020-02668-z This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.