Crew, Richard \(F\)-isocrystals and their monodromy groups. (English) Zbl 0783.14008 Ann. Sci. Éc. Norm. Supér. (4) 25, No. 4, 429-464 (1992). The paper provides some facts about monodromy-groups of convergent and overconvergent \(F\)-isocrystals. The main technical tools are the study of unit root crystals, and the structure of rank-one overconvergent crystals on a curve. The main result is an overconvergent analogue of Deligne’s theory of determinated weights. Reviewer: G.Faltings (Princeton) Cited in 25 Documents MSC: 14F30 \(p\)-adic cohomology, crystalline cohomology Keywords:overconvergent \(F\)-isocrystals; monodromy-groups; unit root crystals PDFBibTeX XMLCite \textit{R. Crew}, Ann. Sci. Éc. Norm. Supér. (4) 25, No. 4, 429--464 (1992; Zbl 0783.14008) Full Text: DOI Numdam EuDML References: [1] P. BERTHELOT , Géométrie rigide et cohomologie des variétés algébriques de caractéristique p , Journées d’analyse p-adique (Luminy 1982 ), Mémoire de la S.M.F., n^\circ 23, Suppl. Bull. S.M.F., Vol. 114, 1986 , fasc. 2, pp. 7-32. Numdam | MR 88a:14020 | Zbl 0606.14017 · Zbl 0606.14017 [2] P. BERTHELOT , Cohomologie rigide et cohomologie rigide à support propre (to appear). · Zbl 0515.14015 [3] P. BERTHELOT and W. MESSING , Théorie de Dieudonné cristalline III , Grothendieck Festschrift (to appear). Zbl 0753.14041 · Zbl 0753.14041 [4] R. CREW , Specialization of Crystalline Cohomology , Duke Math. J., Vol. 53, No. 3, 1986 , pp. 749-757. Article | MR 88a:14021 | Zbl 0615.14010 · Zbl 0615.14010 · doi:10.1215/S0012-7094-86-05340-8 [5] R. CREW , F-isocrystals and p-adic representations , in Algebraic Geometry-Bowdoin 1985 , P.S.P.M., Vol. 46, Part 2, 1987 , pp. 111-138. MR 89c:14024 | Zbl 0639.14011 · Zbl 0639.14011 [6] P. DELIGNE , La conjecture de Weil II , Publ. Math. I.H.E.S., Vol. 52, 1980 . Numdam | MR 83c:14017 | Zbl 0456.14014 · Zbl 0456.14014 · doi:10.1007/BF02684780 [7] P. DELIGNE and J. S. MILNE , Tannakian categories , Lect. Notes Math., Vol. 900, Springer-Verlag, 1980 . · Zbl 0477.14004 [8] N. KATZ , p-Adic Properties of Modular Schemes and Modular Forms , in Lect. Notes Math., No. 350, Springer-Verlag, 1973 . MR 56 #5434 | Zbl 0271.10033 · Zbl 0271.10033 [9] N. KATZ , On the calculation of some differential galois groups , Inv. Math., Vol. 87, 1987 , pp. 13-61. MR 88c:12010 | Zbl 0609.12025 · Zbl 0609.12025 · doi:10.1007/BF01389152 [10] N. KATZ and S. LANG , Finiteness Theorems in Geometric Class Field Theory , Ens. Math., Vol. 27, 1981 , pp. 285-319. MR 83k:14012 | Zbl 0495.14011 · Zbl 0495.14011 [11] Yu. MANIN , The Theory of Commutative Formal Groups Over Fields of Finite Characteristic , Russian Math. Surveys, Vol. 18, 1963 , pp. 1-83. MR 28 #1200 | Zbl 0128.15603 · Zbl 0128.15603 · doi:10.1070/rm1963v018n06ABEH001142 [12] A. OGUS , F-isocrystals and De Rham cohomology II-Convergent isocrystals , Duke Math. J., Vol. 51, 1984 , pp. 765-850. Article | MR 86j:14012 | Zbl 0584.14008 · Zbl 0584.14008 · doi:10.1215/S0012-7094-84-05136-6 [13] N. SAAVEDRA R. , Catégories Tannakiennes , Lect. Notes Math., No. 265, Springer-Verlag, 1972 . MR 49 #2769 | Zbl 0241.14008 · Zbl 0241.14008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.